Shot boundary detection in videos is one of the most fundamental tasks towards content-based video retrieval and analysis. In this aspect, an efficient approach to detect abrupt and gradual transition in videos is presented. The proposed method detects the shot boundaries in videos by extracting block-based mean probability binary weight (MPBW) histogram from the normalized Kirsch magnitude frames as an amalgamation of local and global features. Abrupt transitions in videos are detected by utilizing the distance measure between consecutive MPBW histograms and employing an adaptive threshold. In the subsequent step, co-efficient of mean deviation and variance statistical measure is applied on MPBW histograms to detect gradual transitions in the video. Experiments were conducted on TRECVID 2001 and 2007 datasets to analyse and validate the proposed method. Experimental result shows significant improvement of the proposed SBD approach over some of the state-of-the-art algorithms in terms of recall, precision, and F1-score.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.