Research in smoke inhalation has established that free radicals are produced from gases released during combustion and these species impair lung function. Using spin traps and their adducts in an animal model free radicals were measured. Various hyperbaric oxygen regimens were tested in an attempt to attenuate pulmonary damage caused by free radical reactions. Our data demonstrated that persistent oxygen- and carbon-centered free radicals are detectable in intravascular fluids after smoke inhalation. The smoke inhalation model showed however, clearing of spin trap adducts one hour after smoke exposure. Other researchers have found that when 100% oxygen is given at 1 atmosphere absolute (ATA) for 1 h, free radicals were not detectable. However, oxygen given at 2.5 ATA does produce detectable free radicals. With continued exposure at this pressure, the levels of free radicals increase for up to 60 min. This study suggests that the level of free radical induced oxygen toxicity may be a function of oxygen pressure and duration of oxygen exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.