RésuméDans certain nombre d'application de la parole, tel que le codage, la synthèse ou l'identification, il est crucial de faire une discrimination fiable entre les sons voisé et non voisé et de déterminer la fréquence fondamentale (Pitch). Dans ce papier on utilise le cumulant d'ordre 4 et le modèle (Auto-regréssif AR) pour concevoir un nouveau algorithme pour la détection de pitch des sons voisé même dans le cas de présence d'un bruit Gaussian, et de montrer la supériorité de cet algorithme par rapport autre méthodes classiques (méthode cepstral).
Mots Clés : Pitch, Formants, Cumulants, Modéle autoregressif (AR), Cepstre
AbstractIn a number of speech applications, such as coding, synthesis or recognition, it is crucial to make a reliable discrimination between voiced/unvoiced segments and accurately determine the pitch period. The problem of an accurate estimation and decision in noisy condition remains open; Higher-order statistics (H.O.S) have inherent properties that make them well suited when dealing with a mixture of Gaussian and non-Gaussian processes.This paper explores the fourth order cumulant using autoregressive model (AR(p)) and presents a new algorithm for pitch detection of voiced sounds with and without colored Gaussian noise and shows the superiority of the novel method over the classical methods such as cepstral method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.