Danger signals are a hallmark of many common inflammatory diseases, and these stimuli can function to activate the cytosolic innate immune signalling receptor NLRP3 (NOD-, LRR- and pyrin domain-containing 3). Once activated, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Pharmacological inhibition of NLRP3 activation results in potent therapeutic effects in a wide variety of rodent models of inflammatory diseases, effects that are mirrored by genetic ablation of NLRP3. Although these findings highlight the potential of NLRP3 as a drug target, an understanding of NLRP3 structure and activation mechanisms is incomplete, which has hampered the discovery and development of novel therapeutics against this target. Here, we review recent advances in our understanding of NLRP3 activation and regulation, highlight the evolving landscape of NLRP3 modulators and discuss opportunities for pharmacologically targeting NLRP3 with novel small molecules.
Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion. This effort led to the discovery of LGK974, a potent and specific small-molecule Porcupine (PORCN) inhibitor. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of Wnt ligands, a necessary step in the processing of Wnt ligand secretion. We show that LGK974 potently inhibits Wnt signaling in vitro and in vivo, including reduction of the Wnt-dependent LRP6 phosphorylation and the expression of Wnt target genes, such as AXIN2.LGK974 is potent and efficacious in multiple tumor models at well-tolerated doses in vivo, including murine and rat mechanistic breast cancer models driven by MMTV-Wnt1 and a human head and neck squamous cell carcinoma model (HN30). We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide both a strategy and tools for targeting Wntdriven cancers through the inhibition of PORCN.Wnt inhibition | β-catenin | HNSCC
The synthesis, preclinical profile, and in vivo efficacy in rat xenograft models of the novel and selective anaplastic lymphoma kinase inhibitor 15b (LDK378) are described. In this initial report, preliminary structure-activity relationships (SARs) are described as well as the rational design strategy employed to overcome the development deficiencies of the first generation ALK inhibitor 4 (TAE684). Compound 15b is currently in phase 1 and phase 2 clinical trials with substantial antitumor activity being observed in ALK-positive cancer patients.
Signal transducers and activators of transcription (STAT proteins) bind to palindromic sequence elements related to interferon y (IFN-y) activation sites, which were first identified in the promoters of IFN-'yinducible genes. Although the sequences of the natural palindromic STAT-binding elements vary considerably, they conform to the general structure TT(N)5AA. We have systematically examined the effects of the spacing between the TT and AA core half sites on the binding of the STAT complexes activated by IFN-y, interleukin (IL) 6, granulocytemacrophage colony-stimulating factor, and IL-4. We show that (i) as suggested earlier, a core palindromic TT-AA motifwith a 5-bp spacing displays general STAT binding, (ii) a palindromic motif with a spacing of 4 bp selectively binds to complexes containing Stat3, and (iii) a motif with a 6-bp spacing selectively binds the STAT complexes activated by IL-4. We have examined natural elements in the promoters of cytokine-responsive genes that differ in half-site spacing and found that they display binding properties predicted from the synthetic binding sites. Furthermore, the observed differential selective binding characteristics for the most part correlate with the ability to mediate transcriptional activation of transfected test genes in response to the cytokines tested. Our results thus demonstrate that the specificity of STAT-directed transcription in response to particular cytokines or cytokine families depends in part on the spacing of half sites within the conserved response element sequence.
Insufficient pancreatic β-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from β-cells in diabetic patients, no pharmacological agents have been described that increase β-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust β-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces β-cell proliferation, increases β-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore β-cell mass, and highlights a tractable pathway for future drug discovery efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.