A numerical analysis by means of transfer matrix method has been performed on finite one-dimensional photonic crystals consisting of two-layer repeated cells and two non-identical defect cells for the normal incident transverse electric (TE) wave. The study reveals a remarkable new feature showing that the variation of a photonic pass-band transmittance can be induced by varying the refractive index of one of the defect layer at practically the same peak frequency, which offers the potential application for single frequency sensing. The result further demonstrates the flexibility of tailoring the system parameters for application in the desired range of refractive index at the required sensitivity. It is also shown that the photonic pass-band (PPB) peak transmittance is generally less than unity in the index range considered, except for the case with the grating segment lengths ðM; N; LÞ satisfying the condition N ¼ M þ L. This peculiar feature is explained qualitatively in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.