Sulphide production rates of sulphurand sulphate-reducing bacteria up to 50 mg per biomass support particle per day were observed in an aerated sulphide-removal reactor with polyurethane (PUR) foam as carrier material. The optimal pH and temperature for the sulphide-producing bacteria were 8.0 and 30°C respectively. Raschig rings and four types of cube-shaped PUR particles were tested as carrier materials. When using PUR particles, the sulphide production rate was always between 3% and 4% of the sulphide removal rate, dependent on the dimensions and pore size of the polyurethane support particles. With the Raschig rings this ratio was only 2% and for reactors in which no carrier materials were present it was even lower (0.6%). Media containing different mixtures of acetate, propionate, sulphur and sulphate inoculated under anoxic conditions with sludge from the aerated reactor showed the presence of acetate-degrading sulphur-reducing, but not of acetate-degrading sulphate-reducing, bacteria. With propionate as sole electron donor no degradation occurred in the presence of sulphur within 2 weeks, whereas sulphate-dependent propionate oxidation started after 5-6 days incubation. Bacteria were isolated and resembled Desulfuromonas acetoxidans and DesulfobuIbus propionicus morphologically and physiologically.
Neither acetate nor higher fatty acids and glucose have a significant effect on the biotechnological process for sulphide removal at 20 degrees C, in which sulphide is oxidized to sulphur using oxygen. The oxidation of acetate and propionate with oxygen is mainly dependent on the sulphide and oxygen concentrations in the reactor. The occurrence of Thiothrix filaments in sulphide-removing waste-water treatment systems has been investigated using a fixer-film upflow reactor. The influent of this reactor consisted of anaerobically treated paper-mill waste-water, with a sulphide concentration of 140 mg/l. It was found that sulphide loading rate is the decisive parameter as to whether or not Thiothrix will develop in a sulphide-removing reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.