Presented here are results from an experimental study investigating the reduction of subsynchronous vibrations in rotating machinery by adding a single active magnetic bearing actuator to a flexible rotor-bearing system. In this scenario, the Active Magnetic Bearing (AMB) actuator is used as an Active Magnetic Damper (AMD) and is not utilized for rotor support. The AMD can be used to increase stability margins by adding more damping in strategic locations on a rotor allowing for increased tolerance to instability mechanisms and enabling increased performance and efficiency in turbomachinery. Results from an experimental 3-mass test rig supported in fluid-film bushings are presented here. The study shows that subsynchronous vibrations are reducible with an AMD located near the mid-span of the rotor and up to a 98% reduction in the amplitude of subsynchronous vibrations is demonstrated. The overall results from this work demonstrate that reduction in subsynchronous response is feasible and that full rotor dynamic analysis and design is critical for the successful application of this approach as critical speed locations can be altered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.