Previously, we have shown in porcine inner medullary collecting duct (IMCD) cells that endothelin (ET), probably in an autocrine fashion, suppresses arginine vasopressin (AVP)-induced synthesis of cAMP and thereby, may modify the action of AVP on IMCD fluid transport. In the present study we investigated the effects of various stimuli including extracellular tonicity on ET synthesis in porcine IMCD cells in culture. IMCD cells produced ET in a saturationlike time-dependent manner over a period of 24 h. Neither AVP (10(-7) mol/L), bradykinin (10(-7) mol/L), nor atrial natriuretic peptide (10(-7) mol/L) affected basal ET synthesis of IMCD cells at extracellular isotonicity (323 mOsm/kg H2O). The calcium ionophore A23187 (10(-7) mol/L) increased ET production by 38% within 2 h (P < .05). Preincubation for 48 h with increased osmolality in the incubation media from 323 to 600 mOsm/kg H2O by raising the concentrations of 1) NaCl (n = 6), 2) urea (n = 6), or 3) NaCl+urea (n = 6) increased ET synthesis from a control value of 225 +/- 25 pg/mg cell protein/2 h in isotonic medium to 1) 555 +/- 13 pg/mg cell protein/2 h (P < .01), 2) 354 +/- 18 pg/mg cell protein/2 h (P < .05), and 3) 448 +/- 22 pg/mg cell protein/2 h (P < .05), respectively, in hypertonic media. These data suggest that increases in papillary osmolality are associated with enhanced ET synthesis possibly involving a calcium-dependent process and attenuating AVP-dependent fluid absorption in a short-loop feedback fashion.
A rise in blood pressure is the main side effect of erythropoietin (EPO) treatment in patients with renal anemia. The mechanisms, however, by which EPO may cause hypertension are still unclear. We therefore investigated the effects of EPO on endothelin (ET) synthesis and cytosolic free calcium concentration ([Ca2+]i) in vascular endothelial cells. Porcine endothelial cells were isolated from thoracic aorta, pulmonary artery, and vena cava. Studies were performed with cells of the first subculture. ET concentrations were measured radioimmunologically. Changes in [Ca2+]i were determined with the fluorescent probe fura-2. Cytotoxicity was assessed by sodium 3'-[1-(phenyl-amino-carbonyl)-3,4-tetrazolium]-bis(4-methoxy-6-nitro)ben zene sulfonic acid hydrate (XTT) assay. ET synthesis was similar in cells of different vascular origins and was time-dependent, reaching approximately 2 pmol ET/mg protein within 12 h of incubation. EPO (12 to 200 U/mL) stimulated ET release time- and dose-dependently by up to 83.2% (P < .01) within 12 h in the absence of fetal calf serum and heparin. EPO induced an immediate significant rise in [Ca2+]i from 58 +/- 12 nmol/L to 495 +/- 85 nmol/L (P < .01) with a subsequent slow return to 257 +/- 3 nmol/L. During 2 h of incubation, the Ca-ionophore A 23187 (10(-8) mol/L) moderately but significantly stimulated endothelial ET synthesis. However, the Ca-channel blocker verapamil, the intracellular Ca-release blocker TMB-8, and nickel, an unspecific calcium channel blocker, had no consistent effects on [Ca2+]i or ET synthesis. The protein kinase C inhibitor H-7 stimulated basal [Ca2+]i and cellular ET synthesis. The tyrosine kinase inhibitor genistein suppressed the EPO-induced rise in [Ca2+]i and cellular ET synthesis. From these data we conclude that EPO may stimulate ET synthesis in vascular endothelial cells by activation of an EPO-receptor and via intracellular signalling mechanisms that comprise tyrosine kinase activation and a rise in [Ca2+]i. Therefore, the systemic hypertensive effects of EPO may be due at least in part to local stimulation of vascular endothelial ET synthesis via calcium mobilization.
This in vitro study was undertaken to determine the changes in Ca2+ kinetics and cell shape of cultured putative glomerular mesangial cells in the rat in response to angiotensin II (ANG II). Intracellular Ca2+ ([Ca2+]i) was measured using quin 2. ANG II-stimulated Ca2+ efflux was also determined. ANG II induced rapid concentration-dependent increases in [Ca2+]i and Ca2+ efflux. ANG II also induced contraction of mesangial cells as assessed by alterations in cell shape. Even in Ca2+-free medium, ANG II increased [Ca2+]i and Ca2+ efflux, but to a lesser extent. Under this condition, contraction of mesangial cells induced by ANG II was also observed. Readdition of extracellular Ca2+ after the ANG II-induced increase in [Ca2+]i caused a second and slower [Ca2+]i increase. High potassium (50 mM) induced a change of [Ca2+]i, but to a lesser extent compared with the ANG II-induced change. The Ca2+ channel blocker verapamil (5 x 10(-5) M) partially inhibited ANG II-induced Ca2+ influx but totally blocked the increase in [Ca2+]i induced by high potassium. Verapamil did not inhibit ANG II-stimulated Ca2+ efflux or the change in cell shape. Dantrolene (10(-4) M), a blocker of Ca2+ release from endoplasmic reticulum, inhibited ANG II-stimulated Ca2+ efflux and change in cell shape. These results indicate that ANG II rapidly increases [Ca2+]i in cultured rat mesangial cells, in part by mobilizing Ca2+ from dantrolene-sensitive intracellular pools and in part through activation of receptor-operated and voltage-dependent Ca2+ channels. The [Ca2+]i mobilization, however, seems to be the primary modulator of initial glomerular mesangial cell contraction.
Arterial hypertension is a common side effect of cyclosporine A therapy; however, the cellular mechanism of cyclosporine A-induced hypertension is still unknown. The present study, therefore, examined the effect of cyclosporine A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.