The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.
We determine the top quark mass m t using t t pairs produced in the DO " detector by ͱsϭ1.8 TeV pp collisions in a 125 pb Ϫ1 exposure at the Fermilab Tevatron. We make a two constraint fit to m t in t t→bW ϩ b W Ϫ final states with one W boson decaying to qq and the other to e or . Likelihood fits to the data yield m t (lϩjets)ϭ173.3Ϯ5.6 (stat) Ϯ 5.5 (syst) GeV/c 2 . When this result is combined with an analysis of events in which both W bosons decay into leptons, we obtain m t ϭ172.1Ϯ5.2 (stat) Ϯ 4.9 (syst) GeV/c 2 . An alternate analysis, using three constraint fits to fixed top quark masses, gives m t (lϩjets)ϭ176.0 Ϯ7.9 (stat)Ϯ 4.8 (syst) GeV/c 2 , consistent with the above result. Studies of kinematic distributions of the top quark candidates are also presented. ͓S0556-2821͑98͒06815-5͔
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.