The inverse process of the spin-Hall effect (ISHE), conversion of a spin current into an electric current, was observed at room temperature. A pure spin current was injected into a Pt thin film using spin pumping, and it was observed to generate electromotive force transverse to the spin current. By changing the spin-current polarization direction, the magnitude of this electromotive force varies critically, consistent with the prediction of ISHE.
A magnetic domain wall (DW) is a spatially localized change of magnetization configuration in a magnet. This topological object has been predicted to behave at low energy as a composite particle with finite mass. This particle will couple directly with electric currents as well as magnetic fields, and its manipulation using electric currents is of particular interest with regard to the development of high-density magnetic memories. The DW mass sets the ultimate operation speed of these devices, but has yet to be determined experimentally. Here we report the direct observation of the dynamics of a single DW in a ferromagnetic nanowire, which demonstrates that such a topological particle has a very small but finite mass of 6.6 x 10(-23) kg. This measurement was realized by preparing a tunable DW potential in the nanowire, and detecting the resonance motion of the DW induced by an oscillating current. The resonance also allows low-current operation, which is crucial in device applications; a DW displacement of 10 microm was induced by a current density of 10(10) A m(-2).
The motion of a magnetic domain wall in a submicrometer magnetic wire was detected by use of the giant magnetoresistance effect. Magnetization reversal in a submicrometer magnetic wire takes place by the propagation of a magnetic domain wall, which can be treated as a "particle." The propagation velocity of the magnetic domain wall was determined as a function of the applied magnetic field.
The magnetic structure and magnetization process in a permalloy wire-based honeycomb network have been investigated by means of magnetic-force microscopy ͑MFM͒ and magnetoresistance measurement. The MFM measurements show the remanent magnetic structures to be governed by magnetic interaction similar to the ice rule, which provides a direct analogy between the present honeycomb network and an Ising system on a kagomé lattice. The magnetoresistance measurements reveal that this interaction also dominates the magnetization processes in the network. By decreasing the exchange energy at the vertices of the network, the ice-rule type of interaction causes a transition of the magnetization process in the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.