The usual approaches for designing trickle irrigation systems are based upon empirical estimation of the emitters' density and the moistened soil volume. The objective of this paper is to implement a quasi-analytical approach that allows the inference of these two parameters. The emitters' density is determined so that the rooted soil volume would be moistened even at the peak period. The proposed approach enables to adjust the irrigation time in order to replenish the rooted soil volume up to a threshold for an optimal plant growth. The required inputs are: the water retention curve, the hydraulic conductivity at the wetting front, the radius of the moistened spot at the soil surface, and the rooted soil depth. The method is assessed with respect to study cases for sandy and silty soils. The used emitters' discharge were 2 l/h and 4 l/h. The present approach has the advantage of preserving the mass conservation as well as the dynamic aspect of irrigation management. For design purpose, the irrigation time is set equal to the time required to attain a quasi-state flow conditions within the rooted zone. Nevertheless, irrigation time should vary so that design errors are adjusted for irrigation scheduling needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.