Transformation of austenite to ferrite under continuous cooling condition was investigated. The heat conduction problem was managed by finite element method while two-dimensional cellular automata modeling was simultaneously performed to predict the progress of austenite decomposition using a two-step algorithm to reduce surface-to-volume ratio. Continuous cooling experiments on low carbon steel were made and the ferrite structure was determined and compared with the simulation data. The predicted and the experimental results demonstrated an acceptable consistency and the activation energy for ferrite growth was determined as 171 kJ/ mole. The rate of ferrite transformation increased under examined continuous cooling conditions owing to higher nucleation rate. Moreover, the initial austenite grain size has shown a significant impact on the rate of transformation e.g. in air-cooled samples as the austenite grain size decreased from 24 to 34 µm, the mean ferrite grain size decreased about 8 µm.
In the present work, the process of equal channel angular pressing of dispersion strengthened Cu-1?1 wt-%Al 2 O 3 containing nanometric alumina particles was investigated by means of mathematical modelling and experimental testing. Through the modelling, deformation parameters such as hydrostatic pressure distribution and strain field were determined, and the effect of deformation path on these parameters was estimated. Equal channel angular pressing as well as mechanical and microstructural evaluations were also conducted to assess mechanical properties, grain structure and void volume fraction after deformation in different routes. The results indicate that distributions of plastic strain and hydrostatic stresses are significantly affected by deformation path route as well as utilised die design. Furthermore, void formation around hard alumina particles may occur in regions with high tensile hydrostatic stresses leading to fracturing during deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.