Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.
For numerous taxa, species richness is much higher in tropical than in temperate zone habitats 1 . A major challenge in community ecology and evolutionary biogeography is to reveal the mechanisms underlying these differences. For herbivorous insects, one such mechanism leading to an increased number of species in a given locale could be increased ecological specialization, resulting in a greater proportion of insect species occupying narrow niches within a community. We tested this hypothesis by comparing host specialization in larval Lepidoptera (moths and butterflies) at eight different New World forest sites ranging in latitude from 15° S to 55° N. Here we show that larval diets of tropical Lepidoptera are more specialized than those of their temperate forest counterparts: tropical species on average feed on fewer plant species, genera and families than do temperate caterpillars. This result holds true whether calculated per lepidopteran family or for a caterpillar assemblage as a whole. As a result, there is greater turnover in caterpillar species composition (greater fi diversity) between tree species in tropical faunas than in temperate faunas. We suggest that greater specialization in tropical faunas is the result of differences in trophic interactions; for example, there are more distinct plant secondary chemical profiles from one tree species to the next in tropical forests than in temperate forests as well as more diverse and chronic pressures from natural enemy communities.Ecological theory requires that organisms differ in their use of shared, limiting resources if they are to coexist. The role of resource specialization in fostering biodiversity is thus a central issue in ecology and evolutionary biology. A longstanding hypothesis predicts a direct relationship between ecological specialization and species richness in communities 2 . Specialization reduces interspecific competition and facilitates species coexistence by partitioning niche space 3,4 . Character divergence across generations in response to trophic interactions or competition 5 provides an evolutionary mechanism by which species richness and specialization can increase together 6 " 8 . Beginning with observations recounted by Darwin 9 and Wallace 10 , examples of ecological specialization in tropical organisms have fostered a widespread perception that specificity of interactions is a hallmark of the high-diversity tropics.Although biotic inventories often confirm the higher species richness of tropical communities than those at higher latitudes 1 , few studies have quantified increased ecological specialization along a latitudinal gradient 11 . Novotny et al. 12 recently challenged the notion that herbivorous insects are more specialized in the tropics by the use of a quantitative comparison of host specificity of herbivorous insects in tropical forests of Papua New Guinea and those in temperate forests of central Europe. They reported a similar host specificity among temperate and tropical herbivorous insects and concluded that the ...
Insect outbreaks are expected to increase in frequency and intensity with projected changes in global climate through direct effects of climate change on insect populations and through disruption of community interactions. Although there is much concern about mean changes in global climate, the impact of climatic variability itself on species interactions has been little explored. Here, we compare caterpillar-parasitoid interactions across a broad gradient of climatic variability and find that the combined data in 15 geographically dispersed databases show a decrease in levels of parasitism as climatic variability increases. The dominant contribution to this pattern by relatively specialized parasitoid wasps suggests that climatic variability impairs the ability of parasitoids to track host populations. Given the important role of parasitoids in regulating insect herbivore populations in natural and managed systems, we predict an increase in the frequency and intensity of herbivore outbreaks through a disruption of enemy-herbivore dynamics as climates become more variable.climate change ͉ herbivore ͉ outbreak ͉ parasitoid ͉ top-down
Patterns of insect herbivore and leaf pathogen attack are described for 25 plant species (10 trees, 10 shrubs and five herbs) at a Brazilian savanna (cerrado) site. Plant and leaf traits were correlated with interspecific variation in attack by herbivores and pathogens in order to account for differences among plant species. Across all species, pathogen damage was 1.5 times higher than insect damage (17.3% vs. 6.8%, respectively). Most insect damage occurred to young leaves while they were expanding (end of the dry season). In contrast, pathogen attack was low on young expanding leaves at the end of the dry season, increased as those leaves matured in the wet season, but continued to increase through the next dry season. Protein-binding capacity was negatively associated with interspecific differences in insect damage to mature leaves. Protein availability and plant height were positive predictors of pathogen attack among plant species, while leaf expansion rate was a significant negative predictor. Interspecific differences in leaf phenology had little effect on the amount of damage caused by either insects or pathogens. However, new leaves produced during the wet season suffered less insect damage than leaves produced during the dry season, the time of greatest leaf production. Timing of young leaf production affected pathogen attack but the season of escape depended on plant species. In contrast, there was no evidence for escape in space as common species were less likely to suffer high pathogen attack than rare species. New and mature leaf toughness, and time for a leaf to reach full expansion all increased from herbs to shrub to trees, while mature leaf nitrogen decreased in that order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.