α-Syntrophin is a scaffolding adapter protein expressed primarily on the sarcolemma of skeletal muscle. The COOH-terminal half of α-syntrophin binds to dystrophin and related proteins, leaving the PSD-95, discs-large, ZO-1 (PDZ) domain free to recruit other proteins to the dystrophin complex. We investigated the function of the PDZ domain of α-syntrophin in vivo by generating transgenic mouse lines expressing full-length α-syntrophin or a mutated α-syntrophin lacking the PDZ domain (ΔPDZ). The ΔPDZ α-syntrophin displaced endogenous α- and β1-syntrophin from the sarcolemma and resulted in sarcolemma containing little or no syntrophin PDZ domain. As a consequence, neuronal nitric oxide synthase (nNOS) and aquaporin-4 were absent from the sarcolemma. However, the sarcolemmal expression and distribution of muscle sodium channels, which bind the α-syntrophin PDZ domain in vitro, were not altered. Both transgenic mouse lines were bred with an α-syntrophin–null mouse which lacks sarcolemmal nNOS and aquaporin-4. The full-length α-syntrophin, not the ΔPDZ form, reestablished nNOS and aquaporin-4 at the sarcolemma of these mice. Genetic crosses with the mdx mouse showed that neither transgenic syntrophin could associate with the sarcolemma in the absence of dystrophin. Together, these data show that the sarcolemmal localization of nNOS and aquaporin-4 in vivo depends on the presence of a dystrophin-bound α-syntrophin PDZ domain.
The mouse major urinary proteins are pheromone-binding proteins that function as carriers of volatile effectors of mouse physiology and behavior. Crystal structures of recombinant mouse major urinary protein-I (MUP-I) complexed with the synthetic pheromones, 2-sec-butyl-4,5-dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone, have been determined at high resolution. The purification of MUP-I from mouse liver and a high-resolution structure of the natural isolate are also reported. These results show the binding of 6-hydroxy-6-methyl-3-heptanone to MUP-I, unambiguously define ligand orientations for two pheromones within the MUP-I binding site, and suggest how different chemical classes of pheromones can be accommodated within the MUP-I -barrel.
FAH represents the first structure of a hydrolase that acts specifically on carbon-carbon bonds. FAH also defines a new class of metalloenzymes characterized by a unique alpha/beta fold. A mechanism involving a Glu-His-water catalytic triad is suggested based on structural observations, sequence conservation and mutational analysis. The histidine imidazole group is proposed to function as a general base. The Ca(2+) is proposed to function in binding substrate, activating the nucleophile and stabilizing a carbanion leaving group. An oxyanion hole formed from sidechains is proposed to stabilize a tetrahedral alkoxide transition state. The proton transferred to the carbanion leaving group is proposed to originate from a lysine sidechain. The results also reveal the molecular basis for mutations causing the hereditary tyrosinemia type 1.
Alkaptonuria (AKU), the prototypic inborn error of metabolism, was the first human disease to be interpreted as a Mendelian trait by Garrod and Bateson at the beginning of last century. AKU results from impaired function of homogentisate dioxygenase (HGO), an enzyme required for the catabolism of phenylalanine and tyrosine. With the novel 7 AKU and 22 fungal mutations reported here, a total of 84 mutations impairing this enzyme have been found in the HGO gene from humans and model organisms. Forty-three of these mutations result in single amino acid substitutions. This mutational information is analysed here in the context of the HGO structure and function using kinetic assays performed using purified AKU mutant enzymes and the crystal structure of human HGO. HGO is a topologically complex structure which assembles as a functional hexamer arranged as a dimer of trimers. We show how the intricate pattern of intra- and inter-subunit interactions and the extensive surfaces required for subunit folding and association of this oligomeric enzyme can be inactivated at multiple levels by single-residue substitutions. This explains, in part, the predominance of missense mutations (67%) in AKU.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.