The morphology diagram of possible structures in two-dimensional diffusional growth is given in the parameter space of undercooling ⌬ versus anisotropy of surface tension ⑀. The building block of the dendritic structure is a dendrite with parabolic tip, and the basic element of the seaweed structure is a doublon. The transition between these structures shows a jump in the growth velocity. We also describe the structures and velocities of fractal dendrites and doublons destroyed by noise. We introduce a renormalized capillary length and density of the solid phase and use scaling arguments to describe the fractal dendrites and doublons. The resulting scaling exponents for the growth velocity and the different length scales are expressed in terms of the fractal dimensions for surface and bulk of these fractal structures. All the considered structures are compact on length scales larger than the diffusion length and they show fractal behavior on intermediate length scales between the diffusion length and a small size cutoff which depends on the strength of noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.