The creep behavior of a rotating disc made of isotropic composite containing varying amounts of silicon carbide in the radial direction has been investigated in the presence of a thermal gradient, also in the radial direction. The variation of silicon carbide content has been so tailored as to contain larger amounts of particles in a highly stressed region. This type of inhomogeneous material is known as Functionally Graded Material (FGM). The thermal gradient experienced by the disc is the result of braking action as estimated by FEM analysis. The creep behavior of the disc under stresses developing due to rotation has been determined following Sherby’s law and compared with that of a similar disc following Norton’s law. The difference in the distribution of stresses and strain rates in the discs does not follow any definite trend but the values are somewhat different. The presence of thermal gradient and a linear particle gradient separately or their simultaneous presence result in a significant decrease in steady state creep rates as compared to that in a composite disc with the same average particle content (20 vol %) distributed uniformly and operating under isothermal condition. Further, the study revealed that the creep behavior of a FGM disc could be significantly improved by increasing the gradient of particle distribution while keeping the same average particle content of 20 vol % silicon carbide in the disc.
Creep behavior of a rotating disc made of isotropic functionally graded material (FGM) has been investigated. The disc under investigation is made of a composite containing silicon carbide particles in a matrix of pure aluminum. The creep behavior has been described by Sherby's law. The disc is considered as having a thermal gradient in the radial direction. The present analysis indicates that for the assumed linear particle distribution, the steady-state strain rates are significantly lower compared to that in an isotropic disc with uniform particle distribution. It is also found that the strain rates in composite discs operating under thermal gradient are reduced as compared to similar discs under a uniform average temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.