In the development of packaging products, the considerations are not limited to the food shelf-life, safety, and practicality, but also environmental sustainability. This paper reports a life cycle assessment (LCA) analysis of a proposed natural fiber-reinforced biopolymer composite takeout food container. The study focuses on the damage assessment of the whole product system, including disposal scenarios of the thermoformed sugar palm fiber (SPF)-reinforced sago starch composite takeout food container. The analysis performed was to anticipate the environmental impact of the cradle-to-grave approach. The results exhibited the total human health damage of 2.63 × 10−5 DALY and ecosystem damage of 9.46 × 10−8 species.year per kg of containers. The main contributor was the carbon dioxide emission from fossil fuel combustion for energy generation that contributed to climate change and caused human health and the ecosystem damages with low-level metrics of 1.3 × 10−5 DALY and 7.39 × 10−8 species.yr per kg of containers, respectively. The most contributed substances in the ‘Particulate matter formation’ impact categories that caused respiratory diseases were from air/nitrogen oxides, air/particulates, <2.5 µm, and air/sulphur dioxide with the metrics of 2.93 × 10−6 DALY, 2.75 × 10−6 DALY, and 1.9 × 10−6 DALY per kg containers, correspondingly. Whereas, for the ‘Agricultural land occupation’, which contributed to ecosystem damage, almost the total contributions came from raw/occupation, forest, intensive with the metric of 1.93 × 10−9 species.yr per kg of containers. Nevertheless, from the results, all impact categories impacted below than 0.0001 DALY for the Human Health damage category and below 0.00001 species.yr for the ecosystem damage category. These results would provide important insights to companies and manufacturers in commercializing the fully biobased takeout food containers.
Biopolymer composite has gained huge attention for its beneficial properties such as biodegradable and less impact to the environment. This consequently would diminish the dependency on the petroleum-based polymer. Abundance of studies have been done on the development and characterization of biopolymer composite materials for food packaging application, but work on the conceptual design of biopolymer composite packaging product is hardly found. Using the Kano Model, Quality Function Deployment for Environment (QFDE), morphological map, and Analytic Hierarchy Method (AHP) framework combination, this paper presents the conceptual design of a natural fibre reinforced biopolymer composites take-out food container. To understand customer satisfaction with the current use of takeout food containers, the Kano model was applied, and the findings were integrated into QFDE. The highest weight of voices of customer and environment (VOCE) as the solution parameters for the design characteristics were later refined using the aid of morphological chart (MC) to systematically develop conceptual designs. Lastly, AHP was utilized to pick the final concept design. The concept design with the highest score (8.3%) was chosen as the final conceptual design.
Starch is a natural polymer and eligible for short-term, single-use food packaging applications. Nevertheless, different starches have different features and properties determined by their botanical plant origins. This paper presents an approach that combines Shannon’s entropy and the Analytic Hierarchy Process method to aid the selection process of starch as matrix in green biocomposites for takeout food packaging design. The proposed selection system ranks alternative starches in terms of the key design elements, i.e. strength, barrier property, weight, and cost. Shannon’s entropy established corresponding weight values for the indicators selected. Six starches: wheat, maize, potato, cassava, sago, and rice were appraised using gathered data from the literature to determine their suitability as a more sustainable option. This study found that sago starch obtained the highest priority score of 26.8%, followed by rice starch (20.2%). Sensitivity analysis was then carried out to further verify the results; sago starch was at the top rank for five of six different scenarios tested. The results showed that sago starch is the starch that can best satisfy the design requirements. Despite the results attained, the selection framework used could be enhanced with a more comprehensive attributes assessment and extensive dataset.
In food process industries, sometimes there was food contamination even when it is still in process. Same as other industries when involved with liquid, product contamination which caused by bacteria can affect the quality and company reputation itself. Therefore, the bacteria growth monitoring system which has fast response and reliability is important in helping the industries control process. In this study, a method of monitoring bacteria growth using ultrasonic sensor has been developed based on measuring frequency and impedance measurement of the liquid medium. In developing a fully functional transducer that can be used directly, a transmitter and receiver circuit for the sensor, and the container to place the bacteria was designed. The transducer proves able to differentiate the change in viscosity and able to be use in different temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.