Electrochemical capacity retention of nearly X-ray amorphous nanostructured manganese oxide (nanoMnO 2 ) synthesized by mixing directly KMnO 4 with ethylene glycol under ambient conditions for supercapacitor studies is enhanced significantly. Although X-ray diffraction (XRD) pattern of nanoMnO 2 shows poor crystallinity, it is found that by Mn K-edge X-ray absorption near edge structure (XANES) measurement that the nanoMnO 2 obtained is locally arranged in a δ-MnO 2 -type layered structure composed of edge-shared network of MnO 6 octahedra. Field emission scanning electron microscopy and XANES measurements show that nanoMnO 2 contains nearly spherical shaped morphology with δ-MnO 2 structure, and 1D nanorods of R-MnO 2 type structure (powder XRD) in the annealed (600 °C) sample. Volumetric nitrogen adsorption-desorption isotherms, inductively coupled plasma analysis, and thermal analysis are carried out to obtain physicochemical properties such as surface area (230 m 2 g -1 ), porosity of nanoMnO 2 (secondary mesopores of diameter 14.5 nm), water content, composition, etc., which lead to the promising electrochemical properties as an electrode for supercapacitor. The nanoMnO 2 shows a very high stability even after 1200 cycles with capacity retention of about 250 F g -1 .
Nanostructured
MnnormalO2
was synthesized at ambient condition by reduction of potassium permanganate with aniline. Powder X-ray diffraction, thermal analysis (thermogravimetric and differential thermal analysis), Brunauer–Emmett–Teller surface area, and infrared spectroscopy studies were carried out for physical and chemical characterization. The as-prepared
MnnormalO2
was amorphous and contained particles of
5–10nm
diameter. Upon annealing at temperatures
400°C
, the amorphous
MnnormalO2
attained crystalline α-phase with a concomitant change in morphology. A gradual conversion of nanoparticles to nanorods is evident from scanning electron microscopy and transmission electron microscopy (TEM) studies. High-resolution TEM images suggested that nanoparticles and nanorods grow in different crystallographic planes. Capacitance behavior was studied by cyclic voltammetry and galvanostatic charge–discharge cycling in a potential range from
−0.2to1.0V
vs SCE in
0.1M
sodium sulfate solution. Specific capacitance of about
250Fnormalg−1
was obtained at a current density of
0.5mAcm−2
(0.8Anormalg−1)
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.