Amorphous hydrogenated silicon (a-Si:H) was deposited by SiH4 decomposition on a hot tungsten filament. The substrate temperature was held at 400 °C for all samples, maintaining conditions where material combining a low defect density and a low hydrogen content is obtained. A systematic study of the effects of gas pressure, substrate-to-filament distance, and filament temperature on film properties is presented, allowing insight into the growth condition required for this material as well as the significance of secondary gas phase reactions. Material of good optoelectronic quality is obtained at high growth rates. The stability with respect to light degradation was compared to typical plasma deposited films. Conditions for the transition from amorphous to microcrystalline films, observed under gas phase dilution with hydrogen, were investigated. By in situ ellipsometry and atomic force microscopy the nucleation and film morphology were shown to be significantly different from those for plasma-chemical vapor deposition material.
The etching of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon by hot tungsten filament generated atomic hydrogen has been investigated. Room-temperature etch rates of 27 Å s −1 for amorphous and 20 Å s −1 for microcrystalline silicon have been achieved. Boron doping decreases the etch rate, whereas phosphorus doping does not affect it. No surface roughening occurs, even for the highest a-Si:H etch rates. In the initial phase of the etch process, however, a bond structure modification arises close to the surface. An increase of microcrystalline silicon etch rates towards the substrate/film interface reflects the coalescence of the microcrystalline nuclei. Hot filament atomic hydrogen etching provides high etch rates of amorphous and polycrystalline silicon with a high selectivity against metals and thermal oxide. Due to its simple setup and control, this kind of hydrogen etching is very interesting for applications in semiconductor technology where F-or Cl-etchants are to be avoided.
The chemical reactions at the surface of transparent conductive oxides (SnO2, ITO and ZnO) have been studied in silane and hydrogen plasmas by in-situ ellipsometry and by SIMS as well as XPS depth profiling. SIMS and XPS of the interface reveal an increasing amount of metallic phases upon lowering a-Si:H growth rates (controlled by plasma power), indicating that the ion and radical impact is more than compensated by protecting the surface by a rapidly growing a-Si:H film. Hence, optical transmission of TCO films as well as the efficiency of solar cells can be improved if the first few nanometers of the p-layer are grown at higher rates. Comparing a-Si:H deposition on top of different TCOs, reduction effects on ITO and SnO2 have been detected whereas ZnO appeared to be chemically stable. Therefore an additional shielding of the SnO2 surface by a thin ZnO layer has been investigated in greater detail. Small amounts of H are detected close to the ZnO surface by SIMS after hydrogen plasma treatment, but no significant changes occur to the optical and electrical properties. In-situ ellipsometry indicates that a ZnO layer as thin as 20 nm completely protects SnO2 from being reduced to metallic phases. This provides for shielding of textured TCOs, and hence rising solar cell efficiencies, too. Regarding light trapping efficiency we additionally investigated the smoothing of initial TCO texture when growing a-Si:H on top by combining atomic force microscopy and spectroscopie ellipsometry.
The growth of amorphous (a-Si:H) and microcrystalline (pc-Si) silicon by hot-wire chemical vapor deposition (HWCVD) has been studied by combining in-situ ellipsometry, atomic force microscopy (AFM), and Raman spectroscopy. Generally a dense nucleation layer is formed during a-Si:H HWCVD, containing nuclei about 0.8 nm high and 10 to 20 nm in diameter. The surface roughness gradually increases with film thickness and settles at a root mean square (RMS) value of 1.6 nm at about 200 nm thickness. For hydrogen dilution at gas flow ratios x=[H2]/[SiH4] of 15 to 120 microcrystalline material was obtained. The grain size and nucleation layer, however, are strongly dependent on x. Low H2 dilution enhances the formation of an amorphous-like interface layer from which the μc-Si:H growth eventually starts. Increasing x promotes the etching of amorphous regions and the surface diffusion of precursors, resulting in larger nuclei. X = 30 yields extended μc-Si nuclei (30 nm height, 90 nm diameter) and a pronounced increase in surface roughness for thicker films, but suppresses the formation of the amorphous-like nucleation layer. A further increase in x remarkably lowers the growth rate, but smoother surfaces at comparable film thickness and larger lateral dimensions of the grains occur. This is interpreted as incipient etching of the crystallites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.