The flame curvature statistics of turbulent premixed Bunsen flames have been analysed in this paper using a Direct Numerical Simulation (DNS) database of turbulent Bunsen flames at ambient and elevated pressures. In order to be able to perform a large parametric study in terms of pressure, heat release parameter, turbulence conditions and nozzle diameter, a single step Arrhenius type irreversible chemistry has been used for the purpose of computational economy, where thermo-chemical parameters are adjusted to match the behavior of stoichiometric methane-air flames. This analysis focuses on the characterization of the local flame geometry in response to turbulence and hydro-dynamic instability. The shape of the flame front is found to be consistent with existing experimental data. Although the Darrieus Landau instability promotes cusp formation, a qualitatively similar flame morphology can be observed for hydrodynamically stable flames. A criterion has been suggested for the curvature PDF to become negatively skewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.