This Letter presents experimental confirmation of the presence of zonal flows in magnetically confined toroidal plasma using an advanced diagnostic system -dual heavy ion beam probes. The simultaneous observation of an electric field at two distant toroidal locations ( 1:5 m apart) in the high temperature ( 1 keV) plasma provides a fluctuation spectrum of electric field (or flow), a spatiotemporal structure of the zonal flows (characteristic radial length of 1:5 cm and lifetime of 1:5 ms), their long-range correlation with toroidal symmetry n 0 , and the difference in the zonal flow amplitude with and without a transport barrier. These constitute essential elements of turbulence-zonal flow systems, and illustrate one of the fundamental processes of structure formation in nature. Zonal flows-azimuthally symmetric bandlike shear flows-are ubiquitous phenomena in the Universe [1][2][3]; examples include Jovian belts and zones, the terrestrial atmospheric jet stream, the super-rotation of the Venusian atmosphere, and the rotation profile of the solar tachocline. Zonal flows have been expected to be present in magnetically confined toroidal plasmas [4] since the characteristics of drift wave turbulence in the plasmas are analogous to Rossby wave turbulence to cause the phenomena in the rotating planets. Recently, their crucial role in determining the turbulent level and resultant transport has been widely recognized, and the identification of the zonal flows becomes an urgent issue in the fusion research to enhance the prospect of plasma burning in the International Thermonuclear Experimental Reactor [5][6][7].In toroidal plasmas, the zonal flows emerge in electric field fluctuation symmetric m n 0 on magnetic flux surface with finite radial wave numbers (see for review, e.g., [8,9]). Two major branches of zonal flows are expected in magnetic confined toroidal plasmas, i.e., a residual flow of nearly zero frequency, and an oscillatory flow termed geodesic acoustic modes (GAMs) [10,11]. These zonal flows are driven exclusively by nonlinear interactions (or inverse cascade) through energy transfer from the microscopic drift waves. Inversely, the zonal flows regulate the drift wave turbulence and resultant transports. The time-varying E B shearing of zonal flows, similar to the mean flows [12], has a significant effect on plasma turbulence and transport.Direct nonlinear simulations have, in fact, confirmed the appearance of and generation processes for zonal flows [13][14][15][16][17][18][19][20], and their essential role in turbulence and transport of toroidal plasmas. In experiments, however, only indirect signs have been obtained for zonal flows and their role in confinement. Coherent oscillations presumed to be GAMs were detected in measurements with a heavy ion beam probe (HIBP) [21,22], with traditional probes [23,24], and with beam emission spectroscopy using a modified time-delayed-estimation analysis technique [25]. Bicoherence analysis showed an increase in nonlinear interaction between zonal flows and turbule...
The technique used to align liquid crystals-rubbing the surface of a substrate on which a liquid crystal is subsequently deposited-has been perfected by the multibillion-dollar liquid-crystal display industry. However, it is widely recognized that a non-contact alignment technique would be highly desirable for future generations of large, high-resolution liquid-crystal displays. A number of alternative alignment techniques have been reported, but none of these have so far been implemented in large-scale manufacturing. Here, we report a non-contact alignment process, which uses low-energy ion beams impinging at a glancing angle on amorphous inorganic films, such as diamond-like carbon. Using this approach, we have produced both laptop and desktop displays in pilot-line manufacturing, and found that displays of higher quality and reliability could be made at a lower cost than the rubbing technique. The mechanism of alignment is explained by adopting a random network model of atomic arrangement in the inorganic films. Order is induced by exposure to an ion beam because unfavourably oriented rings of atoms are selectively destroyed. The planes of the remaining rings are predominantly parallel to the direction of the ion beam.
The kinetics and mechanism of formate synthesis by hydrogenation of CO2 (CO2 + 1/2H2 → HCOOa) and the formate decomposition into CO2 and H2 (HCOOa → CO2 + 1/2H2) over Cu(111) and Cu(110) surfaces were studied by in-situ infrared reflection−absorption spectroscopy (IRAS) using a high-pressure reactor (∼1 atm). The reaction rates and the apparent activation energy of the formate synthesis were measured for Cu(111) and Cu(110), indicating that the formate synthesis on Cu was found to be structure-insensitive. The pressure dependence of CO2 and H2 on the initial formation rate of formate suggested an Eley−Rideal type mechanism, in which a gaseous CO2 molecule directly reacts with an adsorbed hydrogen atom on Cu. This is analogous to the well-known mechanism of formate synthesis by organometallic catalysts, in which CO2 is inserted into a Cu−hydride bond. The reaction rates and the activation energy of the decomposition were measured for Cu(111) and Cu(110). It was found that the formate decomposition on Cu was structure-sensitive in contrast to the formate synthesis. The promotional effect of coexisting H2 upon the rate of formate decomposition by 17 times at maximum was incidentally found only on Cu(111). Interestingly, the increase in the decomposition rate was due to an increase in the preexponential factor of the rate constant for the formate decomposition with the activation energy being constant. Furthermore, the decomposition kinetics of the formate prepared by adsorption of formic acid on O/Cu(111) was identical with the H2-promoted decomposition kinetics of the synthesized formate. The difference in the decomposition kinetics was ascribed to the ordered structure of formate based on the previous STM results, in which a chainlike structure of formate was observed for the synthesized formate, whereas no formate chain was observed for the formate prepared by adsorption of formic acid on O/Cu(111). The unique character of both the decomposition kinetics and the structure of formate observed only for Cu(111) was discussed from the viewpoint of the mass transport of copper atoms creating added formate chains.
The 13th harmonic of a Ti:sapphire (Ti:S) laser in the plateau region was injected as a seeding source to a 250-MeV free-electron-laser (FEL) amplifier. When the amplification conditions were fulfilled, strong enhancement of the radiation intensity by a factor of 650 was observed. The random and uncontrollable spikes, which appeared in the spectra of the Self-Amplified Spontaneous Emission (SASE) based FEL radiation without the seeding source, were found to be suppressed drastically to form to a narrow-band, single peak profile at 61.2 nm. The properties of the seeded FEL radiation were well reproduced by numerical simulations. We discuss the future precept of the seeded FEL scheme to the shorter wavelength region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.