A proper vertex colouring is called a 2-dynamic colouring, if for every vertex v with degree at least 2, the neighbours of v receive at least two colours. The smallest integer k such that G has a dynamic colouring with k colours denoted by χ 2 (G). We denote the cartesian product of G and H by G H. In this paper, we find the 2-dynamic chromatic number of cartesian product of complete graph with complete graph K r K s , complete graph with complete bipartite graph K n K 1,s and wheel graph with complete graph W l K n .
ARTICLE HISTORY
Let \(G=(V,E)\) be a simple graph. A set \(S\subseteq V\) is a dominating set if every vertex in \(V \setminus S\) is adjacent to a vertex in \(S\). The domination number of a graph \(G\), denoted by \(\gamma(G)\) is the minimum cardinality of a dominating set of \(G\). A set \(D \subseteq E\) is an edge dominating set if every edge in \(E\setminus D\) is adjacent to an edge in \(D\). The edge domination number of a graph \(G\), denoted by \(\gamma'(G)\) is the minimum cardinality of an edge dominating set of \(G\). We characterize trees with domination number equal to twice edge domination number.
An edge-vertex Roman dominating function (or just ev-RDF) of a graph [Formula: see text] is a function [Formula: see text] such that for each vertex [Formula: see text] either [Formula: see text] where [Formula: see text] is incident with [Formula: see text] or there exists an edge [Formula: see text] adjacent to [Formula: see text] such that [Formula: see text]. The weight of a ev-RDF is the sum of its function values over all edges. The edge-vertex Roman domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of an ev-RDF [Formula: see text]. We provide a characterization of all trees with [Formula: see text], where [Formula: see text] is the domination number of [Formula: see text]
A vertex u of a graph G = ( V,E ), ve -dominates every edge incident to u , as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set (or a ved–set for short) if every edge of E is ve- dominated by at least one vertex of S . The vertex-edge domination number is the minimum cardinality of a ved–set in G. In this paper, we investigate the graphs having unique minimum ved-sets that we will call UVED-graphs. We start by giving some basic properties of UVED-graphs. For the class of trees, we establish two equivalent conditions characterizing UVED-trees which we subsequently complete by providing a constructive characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.