A quadrilateral element with smoothed curvatures for Mindlin-Reissner plates is proposed. The curvature at each point is obtained by a non-local approximation via a smoothing function. The bending stiffness matrix is calculated by a boundary integral along the boundaries of the smoothing elements (smoothing cells). Numerical results show that the proposed element is robust, computational inexpensive and simultaneously very accurate and free of locking, even for very thin plates. The most promising feature of our elements is their insentivity to mesh distortion.
SUMMARYA stabilized conforming nodal integration finite element method based on strain smoothing stabilization is presented. The integration of the stiffness matrix is performed on the boundaries of the finite elements. A rigorous variational framework based on the Hu-Washizu assumed strain variational form is developed.We prove that solutions yielded by the proposed method are in a space bounded by the standard, finite element solution (infinite number of subcells) and a quasi-equilibrium finite element solution (a single subcell). We show elsewhere the equivalence of the one-subcell element with a quasi-equilibrium finite element, leading to a global a posteriori error estimate.We apply the method to compressible and incompressible linear elasticity problems. The method can always achieve higher accuracy and convergence rates than the standard finite element method, especially in the presence of incompressibility, singularities or distorted meshes, for a slightly smaller computational cost.It is shown numerically that the one-cell smoothed four-noded quadrilateral finite element has a convergence rate of 2.0 in the energy norm for problems with smooth solutions, which is remarkable. For problems with rough solutions, this element always converges faster than the standard finite element and is free of volumetric locking without any modification of integration scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.