Remodelling its shape, or morphogenesis, is a fundamental property of living tissue. It underlies much of embryonic development and numerous pathologies. Convergent extension (CE) of the axial mesoderm of vertebrates is an intensively studied model for morphogenetic processes that rely on cell rearrangement. It involves the intercalation of polarized cells perpendicular to the antero-posterior (AP) axis, which narrows and lengthens the tissue. Several genes have been identified that regulate cell behaviour underlying CE in zebrafish and Xenopus. Many of these are homologues of genes that control epithelial planar cell polarity in Drosophila. However, elongation of axial mesoderm must be also coordinated with the pattern of AP tissue specification to generate a normal larval morphology. At present, the long-range control that orients CE with respect to embryonic axes is not understood. Here we show that the chordamesoderm of Xenopus possesses an intrinsic AP polarity that is necessary for CE, functions in parallel to Wnt/planar cell polarity signalling, and determines the direction of tissue elongation. The mechanism that establishes AP polarity involves graded activin-like signalling and directly links mesoderm AP patterning to CE.
Signalling between mesenchymal and epithelial cells has a profound influence on organ morphogenesis. However, less is known about the mechanical function of epithelial-mesenchymal interactions. Here, we describe two principal effects by which epithelia can regulate shape changes in mesenchymal cell aggregates. We propose that during formation of the embryonic body axis, the epithelial layer relieves surface minimizing tensions that would force cell aggregates into a spherical shape, and controls the serial arrangement of cell populations along the axis. The combined effects permit the tissue to deviate from a spherical form and to elongate.
Epithelia are planar tissues that undergo major morphogenetic movements during development. These movements must work in the context of the mechanical properties of epithelia. Surprisingly little is known about these mechanical properties at the time and length scales of morphogenetic processes. We show that at a time scale of hours, Xenopus gastrula ectodermal epithelium mimics an elastic solid when stretched isometrically; strikingly, its area increases twofold in the embryo by such pseudoelastic expansion. At the same time, the basal side of the epithelium behaves like a liquid and exhibits tissue surface tension that minimizes its exposed area. We measure epithelial stiffness (∼1 mN/m), surface tension (∼0.6 mJ/m 2 ), and epithelium-mesenchyme interfacial tensions and relate these to the folding of isolated epithelia and to the extent of epithelial spreading on various tissues. We propose that pseudoelasticity and tissue surface tension are main determinants of epithelial behavior at the scale of morphogenetic processes.
In the first four years of the LHD experiment, several encouraging results have emerged, the most significant of which is that MHD stability and good transport are compatible in the inward shifted axis configuration. The observed energy confinement at this optimal configuration is consistent with ISS95 scaling with an enhancement factor of 1.5. The confinement enhancement over the smaller heliotron devices is attributed to the high edge temperature. We find that the plasma with an average beta of 3% is stable in this configuration, even though the theoretical stability conditions of Mercier modes and pressure driven low-n modes are violated. In the low density discharges heated by NBI and ECR, internal transport barrier (ITB) and an associated high central temperature (>10 keV) are seen. The radial electric field measured in these discharges is positive (electron root) and expected to play a key role in the formation of the ITB. The positive electric field is also found to suppress the ion thermal diffusivity as predicted by neoclassical transport theory. The width of the externally imposed island is found to decrease when the plasma is collisionless with finite beta and increase when the plasma is collisional. The ICRF heating in LHD is successful and a high energy tail (up to 500 keV) has been detected for minority ion heating, demonstrating good confinement of the high energy particles. The magnetic field line structure unique to the heliotron edge configuration is confirmed by measuring the plasma density and temperature profiles on the divertor plate. A long pulse (2 min) discharge with an ICRF power of 0.4 MW has been demonstrated and the energy confinement characteristics are almost the same as those in short pulse discharges.
SummaryAdhesion differences between cell populations are in principle a source of strong morphogenetic forces promoting cell sorting, boundary formation and tissue positioning, and cadherins are main mediators of cell adhesion. However, a direct link between cadherin expression, differential adhesion and morphogenesis has not yet been determined for a specific process in vivo. To identify such a connection, we modulated the expression of C-cadherin in the Xenopus laevis gastrula, and combined this with direct measurements of cell adhesion-related parameters. Our results show that gastrulation is surprisingly tolerant of overall changes in adhesion. Also, as expected, experimentally generated, cadherin-based adhesion differences promote cell sorting in vitro. Importantly, however, such differences do not lead to the sorting of cells in the embryo, showing that differential adhesion is not sufficient to drive morphogenesis in this system. Compensatory recruitment of cadherin protein to contacts between cadherin-deprived and -overexpressing cells could contribute to the prevention of sorting in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.