Choroidal neovascularization (CNV), or choroidal angiogenesis, is the hallmark of age-related macular degeneration and a leading cause of visual loss after age 55. The pathogenesis of new choroidal vessel formation is poorly understood. Although inflammation has been implicated in the development of CNV, the role of complement in CNV has not been explored experimentally. A reliable way to produce CNV in animals is to rupture Bruch’s membrane with laser photocoagulation. A murine model of laser-induced CNV in C57BL/6 mice revealed the deposition of C3 and membrane attack complex (MAC) in the neovascular complex. CNV was inhibited by complement depletion using cobra venom factor and did not develop in C3−/− mice. Anti-murine C6 Abs in C57BL/6 mice inhibited MAC formation and also resulted in the inhibition of CNV. Vascular endothelial growth factor, TGF-β2, and β-fibroblast growth factor were elevated in C57BL/6 mice after laser-induced CNV; complement depletion resulted in a marked reduction in the level of these angiogenic factors. Thus, activation of complement, specifically the formation of MAC, is essential for the development of laser- induced choroidal angiogenesis in mice. It is possible that a similar mechanism may be involved in the pathophysiology of other angiogenesis essential diseases.
This study was undertaken to identify and characterize the Ag responsible for the induction of experimental autoimmune anterior uveitis (EAAU). Melanin-associated Ag isolated from bovine iris and ciliary body was digested with the proteolytic enzyme V8 protease to solubilize the proteins and the pathogenic protein was purified to homogeneity. Lewis rats were sensitized to various fractions and investigated for the development of anterior uveitis and an immune response to the purified Ag. The uveitogenic Ag had a mass of 22 kDa (SDS-PAGE) and an isoelectric point of 6.75. The N-terminal amino acid sequence of this protein demonstrated 100% homology with the bovine type I collagen α-2 chain starting from amino acid 385 and will be referred to as CI-α2 (22 kDa). Animals immunized with bovine CI-α2 (22 kDa) developed both cellular and humoral immunity to the Ag. They developed anterior uveitis only if the CI-α2 chain underwent proteolysis and if the bound carbohydrates were intact. EAAU induced by CI-α2 (22 kDa) can be adoptively transferred to naive syngenic rats by primed CD4+ T cells. EAAU could not be induced by the adoptive transfer of sera obtained from animals immunized with CI-α2 (22 kDa). The α-1 and α-2 chains (intact or proteolytically cleaved) of type I collagen from calfskin were not pathogenic. Although human anterior uveitis has been historically characterized as a collagen disease, this is first time collagen has been directly identified as the target autoantigen in uveitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.