Choroidal neovascularization (CNV), or choroidal angiogenesis, is the hallmark of age-related macular degeneration and a leading cause of visual loss after age 55. The pathogenesis of new choroidal vessel formation is poorly understood. Although inflammation has been implicated in the development of CNV, the role of complement in CNV has not been explored experimentally. A reliable way to produce CNV in animals is to rupture Bruch’s membrane with laser photocoagulation. A murine model of laser-induced CNV in C57BL/6 mice revealed the deposition of C3 and membrane attack complex (MAC) in the neovascular complex. CNV was inhibited by complement depletion using cobra venom factor and did not develop in C3−/− mice. Anti-murine C6 Abs in C57BL/6 mice inhibited MAC formation and also resulted in the inhibition of CNV. Vascular endothelial growth factor, TGF-β2, and β-fibroblast growth factor were elevated in C57BL/6 mice after laser-induced CNV; complement depletion resulted in a marked reduction in the level of these angiogenic factors. Thus, activation of complement, specifically the formation of MAC, is essential for the development of laser- induced choroidal angiogenesis in mice. It is possible that a similar mechanism may be involved in the pathophysiology of other angiogenesis essential diseases.
The objective of this study was to explore the role of classical, lectin, and alternative pathways of complement activation in laser-induced choroidal neovascularization (CNV). The classical and alternative pathways were blocked in C57BL/6 mice by small interfering RNAs (siRNA) directed against C1q and factor B, respectively. C4−/− mice developed CNV similar to their wild-type controls and inhibition of C1q by siRNA had no effect on the development of CNV. In contrast, CNV was significantly inhibited (p < 0.001) in C5−/− mice and C57BL/6 mice treated with factor B siRNA. Inhibition of the alternative pathway by factor B siRNA resulted in decreased levels of membrane attack complex and angiogenic factors–vascular endothelial growth factor and TGF-β2. Furthermore, factor B was up-regulated in complement sufficient C57BL/6 mice at day 1 postlaser and remained elevated at day 7. Significantly reduced levels of factor H were observed at day 3 in these animals. In conclusion, our results demonstrate that activation of the factor B-dependent alternative pathway, but not the classical or lectin pathways, was essential for the development of CNV in mouse model of laser-induced CNV. Thus, specific blockade of the alternative pathway may represent a therapeutically relevant strategy for the inhibition of CNV.
Systemic tolerance can be induced by the introduction of antigen into an immune-privileged site. Here we investigated the role of complement in the induction of tolerance after intraocular injection. We found that the development of antigen-specific tolerance is dependent on a complement activation product. The ligation of the complement C3 activation product iC3b to complement receptor type 3 (the iC3b receptor) on antigen-presenting cells resulted in the sequential production of transforming growth factor-β2 and interleukin-10, which is essential for the induction of tolerance. These observations may extend to the development of both neonatal tolerance and other forms of acquired tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.