One of the most remarkable results to emerge from heavy-ion collisions over the past two decades is the striking regularity shown by particle yields at all energies. This has led to several very successful proposals describing particle yields over a very wide range of beam energies, reaching from 1A GeV up to 200A GeV, using only one or two parameters. A systematic comparison of these proposals is presented here. The conditions of fixed energy per particle, baryon+anti-baryon density, normalized entropy density as well as percolation model are investigated. The results are compared with the most recent chemical freeze-out parameters obtained in the thermal-statistical analysis of particle yields. The sensitivity and dependence of the results on parameters is analyzed and discussed. It is shown that in the energy range above the top energy of the BNL Alternating Gradient Synchrotron within present accuracies, all chemical freeze-out criteria give a fairly good description of the particle yields. However, the low energy heavy-ion data favor the constant energy per particle as a unified condition of chemical particle freeze-out. This condition also shows the weakest sensitivity on model assumptions and parameters.
ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.