pH frequency distributions of tumours grown s.c. from 30 human tumour xenograft lines in rnu/rnu rats were analysed with the use of H+ ion-sensitive semi-microelectrodes prior to and following stimulation of tumour cell glycolysis by i.v. infusion of glucose. At normoglycemia, the average pH of the tumours investigated was 6.83 (range, 6.72-7.01; n = 268). Without exception, all xenografts responded to the temporary increase in plasma glucose concentration (PGC) from 6 +/- 1 to 30 +/- 3 mM by an accumulation of acidic metabolites, as indicated by a pH reduction to an average value of 6.43 (range, 6.12-6.78; n = 292). This pH value corresponds to a ten-fold increase in H+ ion activity in tumour tissue as compared to arterial blood. Tumour pH approached minimum values at 2-4 h after the onset of glucose administration and could be maintained at acidic levels for 24 h by controlled glucose infusion. Irrespective of pH variations between tumours grown from individual xenograft lines, there was no major difference in pH response to glucose between the four main histopathological tumour entities investigated, i.e. breast, lung and gastrointestinal carcinomas, and sarcomas. In tumours from several xenograft lines, an increase in blood glucose to only 2.5-times the normal value (14 mM) was sufficient to reduce the mean pH to 6.4. Glucose-induced acidosis was tumour-specific. The pH frequency distributions in liver, kidney and skeletal muscle of tumour-bearing rnu/rnu rats were only marginally sensitive to hyperglycemia (average pH, 6.97 vs normal value of 7.14). Tumour-selective activation of pH-sensitive anti-cancer agents, e.g. alkylating drugs, acid-labile prodrugs or pH-sensitive immunoconjugates may thus be feasible in a wide variety of human cancers.
From 65 human breast cancer xenografts investigated, a net glutamine uptake was found in 13 tumors (mean +/- SE: 15.7 +/- 4.5 nmol/g per min) whereas a net release (22.5 +/- 3.3 nmol/g per min) was observed in 40 tumors. In 12 tumors neither a significant net uptake nor a net release was obvious. There is experimental evidence that glutamine is taken up by cancer cells only at arterial concentrations greater than 0.5 mM. Another parameter determining glutamine utilization by tumor cells may be the tissue oxygenation. In hypoxic or anoxic tumor areas, glutamine oxidation is unlikely since oxygen is required for the reoxidation of coenzymes which are reduced in the course of this metabolic pathway. The pronounced net release could be due to proteolysis within the tumors investigated. In ascitic fluid (DS-carcinosarcoma), glutamine accumulated during growth, implicating a reduction in the glutamine consumption rate, proposedly also due to a worsening of the oxygen supply to the suspended tumor cells. Thus, the generally held opinion that L-glutamine is a (if not the) major substrate for the energy metabolism of rapidly growing tumor cells should be reconsidered since evidence for this hypothesis has been derived mainly from in vitro systems with abundant oxygen.
37 (85%) of 44 human breast cancers are successfully transplanted on thymus-aplastic nu/nu-mice without adjunctive immunotherapy. 16 weeks after transplantation 4 rapidly growing tumours are showing human, female karyotypes. Subsequent investigations proved a good correlation between original tumour and transplant: histology, 3H-thymidine marking index and receptors of androgen and estorgen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.