Red cell haemoglobin is the fundamental oxygen-transporting molecule in blood, but also a potentially tissue-damaging compound owing to its highly reactive haem groups. During intravascular haemolysis, such as in malaria and haemoglobinopathies, haemoglobin is released into the plasma, where it is captured by the protective acute-phase protein haptoglobin. This leads to formation of the haptoglobin-haemoglobin complex, which represents a virtually irreversible non-covalent protein-protein interaction. Here we present the crystal structure of the dimeric porcine haptoglobin-haemoglobin complex determined at 2.9 Å resolution. This structure reveals that haptoglobin molecules dimerize through an unexpected β-strand swap between two complement control protein (CCP) domains, defining a new fusion CCP domain structure. The haptoglobin serine protease domain forms extensive interactions with both the α- and β-subunits of haemoglobin, explaining the tight binding between haptoglobin and haemoglobin. The haemoglobin-interacting region in the αβ dimer is highly overlapping with the interface between the two αβ dimers that constitute the native haemoglobin tetramer. Several haemoglobin residues prone to oxidative modification after exposure to haem-induced reactive oxygen species are buried in the haptoglobin-haemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-haemoglobin to the macrophage scavenger receptor CD163 (ref. 3) protrudes from the surface of the distal end of the complex, adjacent to the associated haemoglobin α-subunit. Small-angle X-ray scattering measurements of human haptoglobin-haemoglobin bound to the ligand-binding fragment of CD163 confirm receptor binding in this area, and show that the rigid dimeric complex can bind two receptors. Such receptor cross-linkage may facilitate scavenging and explain the increased functional affinity of multimeric haptoglobin-haemoglobin for CD163 (ref. 4).
Six-coordinated heme groups are involved in a large variety of electron transfer reactions because of their ability to exist in both the ferrous (Fe 2+ ) and ferric (Fe 3+ ) state without any large differences in structure. Our studies on hemes coordinated by two histidines (bis-His) and hemes coordinated by histidine and methionine (His-Met) will be reviewed. In both of these coordination environments, the heme core can exhibit ferric low spin EPR signals with large g max values (also called type I, highly anisotropic low spin, or highly axial low spin, HALS species) as well as rhombic EPR (type II) signals. In bis-His coordinated hemes rhombic and HALS envelopes are related to the orientation of the His groups with respect to each other such that (i) parallel His planes results in a rhombic signal and (ii) perpendicular His planes results in a HALS signal. Correlation between the structure of the heme and its ligands for heme with His-Met axial ligation and ligand-field parameters, as derived from a large series of cytochrome c variants, show, however, that for such a combination of axial ligandsthere is no clear-cut difference between the large g max and the "small g-anisotropy" cases as a result of the relative Met-His arrangements. Nonetheless, a new linear correlation links the average shift <δ> of the heme methyl groups with the g max values.
The Cambridge Structural Database has been searched for all crystal structures including organic solvent molecules (solvates) and solvent water molecules (hydrates). Well above 300 different solvent molecules were identified and the frequencies with which they occur in crystal structures, as a function of the year of publication, were established. The crystal structures are classified as 'organic' and 'metalloorganic'; it is shown that the relative prevalences of various cocrystallized solvents are different in the two groups. Several frequently used organic solvents are also common ligands for metal ions. Special interest has been focused on the existence of heterosolvates, i.e. crystal structures which include more than one type of solvent molecule. Up to five different types of solvent molecules were found in a single crystal structure. It is suggested that the use of solvent mixtures during crystallizations may prove to be a more useful and versatile approach for obtaining crystals of high-molecular-weight organic compounds than has hitherto been recognized.
Treatment of met-myoglobin (FeIII) with H2O2 gives rise to ferryl myoglobin, which is closely related to compound II in peroxidases. Experimental studies have given conflicting results for this species. In particular, crystallographic and extended x-ray absorption fine-structure data have shown either a short (approximately 170 pm) or a longer (approximately 190 pm) Fe-O bond, indicating either a double or a single bond. We here present a combined experimental and theoretical investigation of this species. In particular, we use quantum refinement to re-refine a crystal structure with a long bond, using 12 possible states of the active site. The states differ in the formal oxidation state of the iron ion and in the protonation of the oxygen ligand (O2-, OH-, or H2O) and the distal histidine residue (with a proton on Ndelta1, Nepsilon2, or on both atoms). Quantum refinement is essentially standard crystallographic refinement, where the molecular-mechanics potential, normally used to supplement the experimental data, is replaced by a quantum chemical calculation. Thereby, we obtain an accurate description of the active site in all the different protonation and oxidation states, and we can determine which of the 12 structures fit the experimental data best by comparing the crystallographic R-factors, electron-density maps, strain energies, and deviation from the ideal structure. The results indicate that FeIII OH- and FeIV OH- fit the experimental data almost equally well. These two states are appreciably better than the standard model of compound II, FeIV O2-. Combined with the available spectroscopic data, this indicates that compound II in myoglobin is protonated and is best described as FeIV OH-. It accepts a hydrogen bond from the distal His, which may be protonated at low pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.