The estimation of the intracellular fluxes of mammalian cells using only the mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is underdetermined. Either additional experimental flux data or additional theoretical constraints are required to find one unique flux distribution out of the solution space that is bound by the mass balances. Here, a method is developed using the latter approach. The uptake and production rates of amino acids, glucose, lactate, O2, CO2, NH4, MAB, and the intracellular amino acid pools have been determined for two different steady‐states. The cellular composition {total protein and protein composition, total lipids and fatty acid distribution, total carbohydrates, DNA and RNA} has been measured to calculate the requirements for biosynthesis. It is shown to be essential to determine the uptake/production rates of ammonia and either carbon dioxide or oxygen. In mammalian cells these are cometabolites of cyclic metabolic pathways. The flux distribution that is found using the Euclidean minimum norm as the additional theoretical constraint and taking either the CO2 or the NAD(P)H mass balance into account is shown to be in agreement with the measured O2 and CO2 metabolic rates. The metabolic fluxes in hybridoma cells in continuous culture at a specific growth rate of 0.83 day−1 are estimated for a medium with (optimal medium) and without (suboptimal medium) Primatone RL, an enzymatic hydrolysate of animal tissue that causes a more than twofold increase in cell density. It is concluded that The majority of the consumed glucose (>90%) is channeled through the pentose‐phosphate pathway in rapidly proliferating cells. Pyruvate oxidation and tricarboxylic acid (TCA) cycle activity are relatively low, i.e., 8% of the glucose uptake in suboptimal and 14% in optimal medium, respectively. Under both conditions, only a small fraction of pyruvate is further oxidized to CO2. The flux from glutamate to α‐ketoglutarate (catalyzed by glutamate dehydrogenase) is almost zero in medium with and even slightly reversed in medium without Primatone RL. Almost all glutamate enters the TCA cycle due to the action of transaminases. Transhydrogenation plays a significant role in hybridoma cells under our experimental conditions. NADPH is produced at relatively high rates (11 × 10−12 to 13 × 10−12 mol · cell−1 · day−1) compared to other fluxes in both culture media. © 1996 John Wiley & Sons, Inc.
The large-scale transcriptional program of two Clostridium acetobutylicum strains (SKO1 and M5) relative to that of the parent strain (wild type [WT]) was examined by using DNA microarrays. Glass DNA arrays containing a selected set of 1,019 genes (including all 178 pSOL1 genes) covering more than 25% of the whole genome were designed, constructed, and validated for data reliability. Strain SKO1, with an inactivated spo0A gene, displays an asporogenous, filamentous, and largely deficient solventogenic phenotype. SKO1 displays downregulation of all solvent formation genes, sigF, and carbohydrate metabolism genes (similar to genes expressed as part of the stationary-phase response in Bacillus subtilis) but also several electron transport genes. A major cluster of genes upregulated in SKO1 includes abrB, the genes from the major chemotaxis and motility operons, and glycosylation genes. Strain M5 displays an asporogenous and nonsolventogenic phenotype due to loss of the megaplasmid pSOL1, which contains all genes necessary for solvent formation. Therefore, M5 displays downregulation of all pSOL1 genes expressed in the WT. Notable among other genes expressed more highly in WT than in M5 were sigF, several two-component histidine kinases, spo0A, cheA, cheC, many stress response genes, fts family genes, DNA topoisomerase genes, and central-carbon metabolism genes. Genes expressed more highly in M5 include electron transport genes (but different from those downregulated in SKO1) and several motility and chemotaxis genes. Most of these expression patterns were consistent with phenotypic characteristics. Several of these expression patterns are new or different from what is known in B. subtilis and can be used to test a number of functional-genomic hypotheses.The recent completion and tentative annotation of numerous genome sequences, and the many to follow, create both a wealth of new information for comparative genomic studies and enormous challenges. The latter include the need to develop fast if not high-throughput strategies to understand the major cellular programs of the newly sequenced organisms and to begin to assign functions to groups of genes or individual genes. These challenges are made especially difficult for the majority of cases where the genetics of the organism are not well developed, few genes have been transcriptionally examined or otherwise functionally assigned, mutants are scarce, and the closest related organisms are also minimally understood at the genomic level. The spore-forming strict anaerobe Clostridium acetobutylicum is typical of this situation. Its genome has been sequenced and computer annotated (18) and its physiology has been extensively studied, but only a small number of genes have been studied and functionally identified. The number of available mutants is small, and chromosomal integration for genetic studies remains a major hurdle. None of the other closely or distantly related clostridia is understood genetically (let alone genomically) any better than C. acetobutylicum, and thu...
et al. (2012) A mouse model of clonal CD8 þ T lymphocytemediated alopecia areata progressing to alopecia universalis. J Immunol 188:477-86 Andersson AK, Sumariwalla PF, McCann FE et al. (2011) Blockade of NKG2D ameliorates disease in mice with collagen-induced arthritis: a potential pathogenic role in chronic inflammatory arthritis. Arthritis Rheum 63: 2617-29 Gambelunghe G, Brozzetti A, Ghaderi M et al. (2007) MICA gene polymorphism in the pathogenesis of type 1 diabetes. Ann N Y Acad Sci 1110:92-8 Gilhar A, Ullmann Y, Berkutzki T et al. (1998) Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice. J Clin Invest 101:62-7 Gilhar A, Ullmann Y, Kerner H et al. (2002) Psoriasis is mediated by a cutaneous defect triggered by activated immunocytes: induction of psoriasis by cells with natural killer receptors.
Protein production of mammalian-cell culture is limited due to accumulation of waste products such as lactate, CO(2), and ammonia. In this study, the intracellular fluxes of hybridoma cells are measured to determine the amount by which various metabolic pathways contribute to the secretion of waste products derived from glucose. Continuously cultured hybridoma cells are grown in medium containing either 1-(13)C-, 2-(13)C-, or 6-(13)C-glucose. The uptake and production rates of amino acids, glucose, ammonia, O(2), and CO(2) as well as the cellular composition are measured. In addition, the (13)C distribution of the lactate produced and alanine produced by the hybridomas is determined by (1)H-NMR spectroscopy, and the (13)CO(2)/(12)CO(2) ratio is measured by on-line mass spectrometry. These data are used to calculate the intracellular fluxes of the glycolysis, the pentose phosphate pathway, the TCA cycle, and fluxes involved in amino acid metabolism. It is shown that: (i) approximately 20% of the glucose consumed is channeled through the pentose shunt; (ii) the glycolysis pathway contributes the most to lactate production, and most of the CO(2) is produced by the TCA cycle; (iii) the pyruvate-carboxylase flux is negligibly small; and (iv) the malic-enzyme flux is estimated to be 10% of the glucose uptake rate. Based on these flux data suggestions are made to engineer a more efficient glucose metabolism in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.