In bats it has been shown that they adjust their emissions to situational demands. Here we report similar findings for human echolocation. We asked eight blind expert echolocators to detect reflectors positioned at various azimuth angles. The same 17.5 cm diameter circular reflector placed at 100 cm distance at 0°, 45° or 90° with respect to straight ahead was detected with 100% accuracy, but performance dropped to approximately 80% when it was placed at 135° (i.e. somewhat behind) and to chance levels (50%) when placed at 180° (i.e. right behind). This can be explained based on poorer target ensonification owing to the beam pattern of human mouth clicks. Importantly, analyses of sound recordings show that echolocators increased loudness and numbers of clicks for reflectors at farther angles. Echolocators were able to reliably detect reflectors when level differences between echo and emission were as low as −27 dB, which is much lower than expected based on previous work. Increasing intensity and numbers of clicks improves signal-to-noise ratio and in this way compensates for weaker target reflections. Our results are, to our knowledge, the first to show that human echolocation experts adjust their emissions to improve sensory sampling. An implication from our findings is that human echolocators accumulate information from multiple samples.
Some people who are blind have trained themselves in echolocation using mouth clicks. Here, we provide the first report of psychophysical and clicking data during echolocation of distance from a group of 8 blind people with experience in mouth click-based echolocation (daily use for > 3 years). We found that experienced echolocators can detect changes in distance of 3 cm at a reference distance of 50 cm, and a change of 7 cm at a reference distance of 150 cm, regardless of object size (i.e. 28.5 cm vs. 80 cm diameter disk). Participants made mouth clicks that were more intense and they made more clicks for weaker reflectors (i.e. same object at farther distance, or smaller object at same distance), but number and intensity of clicks were adjusted independently from one another. The acuity we found is better than previous estimates based on samples of sighted participants without experience in echolocation or individual experienced participants (i.e. single blind echolocators tested) and highlights adaptation of the perceptual system in blind human echolocators. Further, the dynamic adaptive clicking behaviour we observed suggests that number and intensity of emissions serve separate functions to increase SNR. The data may serve as an inspiration for low-cost (i.e. non-array based) artificial ‘cognitive’ sonar and radar systems, i.e. signal design, adaptive pulse repetition rate and intensity. It will also be useful for instruction and guidance for new users of echolocation.
Here, we report novel empirical results from a psychophysical experiment in which we tested the echolocation abilities of nine blind adult human experts in click-based echolocation. We found that they had better acuity in localizing a target and used lower intensity emissions (i.e., mouth clicks) when a target was placed 45° off to the side compared with when it was placed at 0° (straight ahead). We provide a possible explanation of the behavioral result in terms of binaural-intensity signals, which appear to change more rapidly around 45°. The finding that echolocators have better echo-localization off axis is surprising, because for human source localization (i.e., regular spatial hearing), it is well known that performance is best when targets are straight ahead (0°) and decreases as targets move farther to the side. This may suggest that human echolocation and source hearing rely on different acoustic cues and that human spatial hearing has more facets than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.