Zinc deficiency affects hepatic functions and due to the central role of the liver in metabolism, this may contribute to metabolic alterations in other tissues in zinc deficiency. In addition to clinical manifestations of zinc deficiency, we used cDNA- and oligonucleotide-arrays to compare the expression of > 2500 different genes in liver of rats force-fed a zinc-adequate or a zinc-deficient diet for 11 d. Radio- or fluorescence-labeled cDNAs from liver of control and zinc-deficient rats were hybridized to arrays. Approximately 1550 mRNAs were detected above background levels; by comparing expression profiles of the two groups, the mRNA levels of 66 genes were found to be altered by zinc deficiency. Steady-state expression levels of 35 genes were reduced, whereas the mRNA-levels of 31 genes were elevated. Array data were verified by Northern blot analysis for 24 selected genes and 19 were confirmed to be up- or down-regulated. Among those, predominantly gene products that participate in growth (i.e., insulin-like growth factor binding proteins), lipid metabolism (long-chain acyl-CoA synthetase), xenobiotic metabolism (cytochrome P(450) isoenzymes), the stress response (glutathione transferase), nitrogen metabolism (cytosolic aspartate aminotransferase), intracellular trafficking (syntaxin isoforms) and signal transduction (G-protein-coupled receptors) were identified. Additionally, regulation of mRNA levels of genes important for porphyrin synthesis and collagen metabolism was observed. In conclusion, we have identified in vivo a number of mammalian genes from different cellular pathways whose expression changes in response to zinc depletion. The characterization of the identified genes and their products will allow a more comprehensive analysis of the role of zinc in metabolism; moreover, the mRNAs identified could be useful in establishing biomarkers for the determination of zinc status in mammals.
For identification of the underlying molecular changes in hepatic lipid metabolism in zinc deficiency, rats were force-fed a zinc-deficient diet. Subsequently DNA-microarray and proteome profiling was performed in combination with hepatic lipid analysis. Of 6200 target sequences analyzed, 268 transcripts showed altered expression levels in livers of zinc-deficient rats, with 43 genes thereof related to hepatic lipid metabolism. Northern blot analysis and quantitative real-time RT-PCR were employed to confirm changes in mRNA levels. Proteins involved in lipid metabolism were identified by proteome analysis. Functional gene clusters with uniform changes in transcript levels suggested that the pathways required for lipolysis and mitochondrial as well as peroxisomal fatty acid degradation were downregulated, whereas those needed for de novo fatty acid synthesis and triglyceride assembly were increased. Subsequent enzymatic analysis of liver tissues confirmed an almost 40% greater triacylglycerol concentration in zinc-depleted rats, as well as an altered fatty acid composition of the lipid fraction as determined by gas chromatography. Liver lipids of zinc-deficient rats had significantly greater proportions of cis-9-oleic acid, cis-11-vaccenic acid, caprylic acid, myristic acid, alpha-linolenic acid, and eicosapentaenoic acid, and significantly less stearic and arachidonic acids. These alterations in hepatic metabolism are discussed in the context of changes in mRNA and protein levels of enzymes and transporters responsible for fatty acid metabolism, sequestration, and their transcriptional control.
Dietary zinc deficiency in rats causes increased osmotic fragility of their erythrocytes. In this study, the influence of supplementary antioxidants (vitamin C, vitamin E or beta-carotene) on osmotic fragility, oxidative damage and components of the primary defense system of erythrocytes of zinc-deficient rats was investigated. Indicators of hemolysis in vivo were also examined. Five groups of 12 male rats were force-fed a zinc-adequate diet (control rats), a zinc-deficient diet or a zinc-deficient diet enriched with vitamin C, vitamin E or beta-carotene. Compared with the control rats, the rats fed the zinc-deficient diet without supplementary antioxidants had greater red blood cell osmotic fragility, higher concentrations of thiobarbituric acid-reactive substances and alanine, higher glutathione S-transferase activity, lower concentration of glutathione and activity of glutathione peroxidase as well as lower activity of superoxide dismutase in plasma (P < 0.05). Supplementation with antioxidants generally improved osmotic fragility in zinc-deficient rats without influencing zinc concentration or alkaline phosphatase activity in plasma, indicators of zinc status. At some of the hypotonic saline concentrations tested, vitamin C and beta-carotene significantly affected osmotic fragility. The zinc-deficient rats fed a diet without supplementary antioxidants had significantly higher concentrations of alanine in erythrocytes than the zinc-deficient rats supplemented with vitamin C, vitamin E or beta-carotene and had significantly higher levels of thiobarbituric acid-reactive substances in erythrocytes than the rats supplemented with beta-carotene. There was no indication of hemolysis in vivo in rats fed zinc-deficient diets. The results show that supplementary antioxidants decrease osmotic fragility and oxidative damage of erythrocytes in zinc-deficient rats.
A review of experimental studies of the effect of zinc nutrition on insulin metabolism is presented. In addition to a short introduction to the synthesis, secretion, and action of insulin, the effects of zinc deficiency-specifically on glucose tolerance, insulin secretion, insulin synthesis and storage, and on total insulin-like activity-are dealt with. The concentrations of zinc and chromium in serum, pancreas, and liver are compared to those of zinc-deficient animals and pair-fed controls.In contrast to pair-fed controls, zinc-deficient rats had unaltered proinsulin contents after glucose stimulation, but they showed a diminished glucose tolerance, lowered serum insulin content, and an elevated total insulin-like activity. The serum zinc concentration of the deficient animals was greatly reduced and did not change during glucose stimulation, whereas it rose in the case of the pair-fed controls. The serum chromium concentration increased in both groups in response to glucose stimulation. In the pancreas of the deficient animals, the zinc concentration was reduced 60% and it increased during the glucose tolerance test. In the liver there were no significant differences. The chromium concentrations were elevated in both the pancreas and liver of the zinc-deficient rats by 60 and 100%, respectively, and were not influenced by glucose injection.These studies show clearly that nutritional zinc deficiency influences insulin metabolism and action.
The study described here investigates the influence of a specific alimentary Zn deficiency on the concentration of growth hormone (GH), insulin-like growth factor I (IGF-I) and insulin in the serum of force-fed rats. For this purpose 24 male Sprague-Dawley rats with an average bodyweight of 108 g were divided into 2 groups of 12 animals each. The Zn-deficient group and the control group received for 12 days a semi-synthetic casein diet with a Zn content of 1.3 and 25 ppm respectively. In order to prevent the reduced feed intake which occurs in Zn deficiency and the associated energy and protein shortage from interfering with the experimental parameters, all animals were fed 4 times daily by gastric tube. This made it possible to supply all animals with adequate-nutrients and to synchronise the feed intake exactly. After 12 days the depleted rats were in a severe state of Zn deficiency, as demonstrated by the reduction of Zn in the serum and the femur by 62% and 44% respectively and the 70% lower serum activity of alkaline phosphatase. In the Zn-deficient rats the concentration of GH in the serum was significantly increased by 78%, while IGF-1 and insulin were significantly reduced by 28% and 25% respectively. It is thought that the growth depression observed in the Zn-deficient rats in this study despite their identical feed intake is probably due to a reduced concentration of IGF-I and insulin and that the biological activity or the binding of GH to receptors is impaired in specific alimentary Zn deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.