Numerous enzymes, such as the pyridoxal 5'-phosphate (PLP)-dependent enzymes, require cofactors for their activities. Using X-ray crystallography, structural snapshots of the L-serine dehydratase catalytic reaction of a bacterial PLP-dependent enzyme were determined. In the structures, the dihedral angle between the pyridine ring and the Schiff-base linkage of PLP varied from 18° to 52°. It is proposed that the organic cofactor PLP directly catalyzes reactions by active conformational changes, and the novel catalytic mechanism involving the PLP cofactor was confirmed by high-level quantum-mechanical calculations. The conformational change was essential for nucleophilic attack of the substrate on PLP, for concerted proton transfer from the substrate to the protein and for directing carbanion formation of the substrate. Over the whole catalytic cycle, the organic cofactor catalyzes a series of reactions, like the enzyme. The conformational change of the PLP cofactor in catalysis serves as a starting point for identifying the previously unknown catalytic roles of organic cofactors.
A novel bacterial aldehyde dehydrogenase (ALDH) that converts retinal to retinoic acid was first identified inBacillus cereus. The amino acid sequence of ALDH fromB. cereus(BcALDH) was more closely related to mammalian ALDHs than to bacterial ALDHs. This enzyme converted not only small aldehydes to carboxylic acids but also the large aldehyde all-trans-retinal to all-trans-retinoic acid with NAD(P)+. We newly found thatBcALDH and human ALDH (ALDH1A1) could reduce all-trans-retinal to all-trans-retinol with NADPH. The catalytic residues inBcALDH were Glu266 and Cys300, and the cofactor-binding residues were Glu194 and Glu457. The E266A and C300A variants showed no oxidation activity. The E194S and E457V variants showed 15- and 7.5-fold higher catalytic efficiency (kcat/Km) for the reduction of all-trans-retinal than the wild-type enzyme, respectively. The wild-type, E194S variant, and E457V variant enzymes with NAD+converted 400 μM all-trans-retinal to 210 μM all-trans-retinoic acid at the same amount for 240 min, while with NADPH, they converted 400 μM all-trans-retinal to 20, 90, and 40 μM all-trans-retinol, respectively. These results indicate thatBcALDH and its variants are efficient biocatalysts not only in the conversion of retinal to retinoic acid but also in its conversion to retinol with a cofactor switch and that retinol production can be increased by the variant enzymes. Therefore,BcALDH is a novel bacterial enzyme for the alternative production of retinoic acid and retinol.IMPORTANCEAlthough mammalian ALDHs have catalyzed the conversion of retinal to retinoic acid with NAD(P)+as a cofactor, a bacterial ALDH involved in the conversion is first characterized. The biotransformation of all-trans-retinal to all-trans-retinoic acid byBcALDH and human ALDH was altered to the biotransformation to all-trans-retinol by a cofactor switch using NADPH. Moreover, the production of all-trans-retinal to all-trans-retinol was changed by mutations at positions 194 and 457 inBcALDH. The alternative biotransformation of retinoids was first performed in the present study. These results will contribute to the biotechnological production of retinoids, including retinoic acid and retinol.
Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight on rice; this species is one of the most destructive pathogenic bacteria in rice cultivation worldwide. Peptide deformylase (PDF) catalyzes the removal of the N-formyl group from the N-terminus of newly synthesized polypeptides in bacterial cells and is an important target to develop antibacterial agents. We determined crystal structures of Xoo PDF (XoPDF) at up to 1.9 Å resolution, which include apo, two substrate-bound (methionine-alanine or methionine-alanine-serine), an inhibitor-bound (actinonin), and six fragment chemical-bound structures. Six fragment chemical compounds were bound in the substrate-binding pocket. The fragment chemical-bound structures were compared to the natural PDF inhibitor actinonin-bound structure. The fragment chemical molecules will be useful to design an inhibitor specific to XoPDF and a potential pesticide against Xoo.
Xanthomonas oryzae pv. oryzae (Xoo) is a plant bacterial pathogen that causes bacterial blight (BB) disease, resulting in serious production losses of rice. The crystal structure of malonyl CoA-acyl carrier protein transacylase (XoMCAT), encoded by the gene fabD (Xoo0880) from Xoo, was determined at 2.3 Å resolution in complex with N-cyclohexyl-2-aminoethansulfonic acid. Malonyl CoA-acyl carrier protein transacylase transfers malonyl group from malonyl CoA to acyl carrier protein (ACP). The transacylation step is essential in fatty acid synthesis. Based on the rationale, XoMCAT has been considered as a target for antibacterial agents against BB. Protein-protein interaction between XoMCAT and ACP was also extensively investigated using computational docking, and the proposed model revealed that ACP bound to the cleft between two XoMCAT subdomains.
D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(β,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.