A radio-controlled unmanned helicopter-based low-altitude remote sensing (LARS) platform was used to acquire quality images of high spatial and temporal resolution in order to estimate yield and total biomass of a rice crop (Oriza sativa L.). Fifteen rice field plots with five N treatments (0, 33, 66, 99, and 132 kg ha -1 ) having three replicates each were arranged in a randomized complete block design for estimating yield and biomass as a function of applied N. Images were obtained by image acquisition sensors mounted on the LARS platform operating at the height of 20 m over experimental plots. The rice yield and total biomass for the five N treatments were found to be significantly different at the 0.05 and 0.1 levels of significance, respectively, and normalized difference vegetation index (NDVI) values at panicle initiation stage were highly correlated with yield and total biomass with regression coefficients (r 2 ) of 0.728 (RMSE = 0.458 ton ha -1 ) and 0.760 (RMSEĂ= 0.598 ton ha -1 ), respectively. The study demonstrated the suitability of using LARS images as a substitute for satellite images for estimating leaf chlorophyll content in terms of NDVI values (r 2 = 0.897, RMSE = 0.012). The LARS system described has potential to evaluate areas that require additional nutrients at critical growth stages to improve final yield in rice cropping.
Postharvest losses contribute to food shortages and ongoing food insecurity. Value addition in each aspect of agricultural produce creates more quality and adequate demand for the products. However, the growing market demand for quality and consistency in supply requires resources and necessary technical skills. There is a poor linkage between Research and Development institutions and the agro-value addition industry. Shortage of postharvest and value addition technical specialists and inefficient knowledge transfer from research stations to extension services are some constraints for needed outreach activities. Effective extension and training play a vital role in building capacity along the value chain by encouraging proper postharvest activities. In this article, the current postharvest value addition challenges are discussed with a specific focus on Oman. Furthermore, the strategies to be undertaken to enhance value addition processing and the need for increased institutional capacity building and technology transfer to achieve sustainability are discussed. It was recommended that targeted involvement be aimed at for better support for agricultural value addition in Oman.
This study aimed to explore the potential of developing a novel cooling system combining a greenhouse and an earth-tube heat exchanger (ETHE). In this system, greenhouse air is circulated through the underneath soil mass to use the deep-soil cooling effect. This was achieved through the following steps. First, soil temperature profile inside and outside the cultivated greenhouse was monitored for almost one year to study the possibility of using deep-soil coldness for cooling the greenhouse air. Second, a prototype ETHE was built to practically investigate the potential reduction in air temperature as the air flows inside the deep earth pipes. Third, a prototype greenhouse was erected to study the ETHE concept. Results from the first experiment revealed that soil temperature at a soil depth of 2.5 m inside the greenhouse offers good conditions to bury the ETHE. The soil temperature at this soil depth was below the maximum temperature (32°C) that most greenhouse crops can withstand. Results from the prototype ETHE showed a slight reduction in air temperature as it passed through the pipes. From the prototype of the integrated greenhouse and ETHE system, reduction in air temperature was observed as the air passed through the ETHE pipes. At night, the air was heated up across the ETHE pipes, indicating that the ETHE was working as a heater. We concluded from this study that greenhouses in arid climates can be cooled using the ETHE concept which would save a large amount of water that would otherwise be consumed in the evaporative coolers. Further investigations are highly encouraged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.