Experimental observation and numerical modelling were employed to investigate the solidification cracking behaviour during fibre laser welding of 6013 aluminium alloy. The solidification cracking initiation location and propagation path were studied using a high speed camera system and via metallurgical analysis. A three-dimensional thermomechanical finite element model of fibre laser welding of aluminium alloys was developed, which considered cylindrical volumetric heat source, temperature dependent material properties, solidification shrinkage and stress relaxation in the weld molten pool. The transient evolution and distribution of mechanical strain in the brittle temperature range (BTR) were analysed in detail to find the factors which drove the crack initiation and propagation. The results showed that the solidification cracking initiated near the fusion line and then propagated along the centreline of the weld, which was the result of the strain distribution characteristic in BTR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.