Activation by agonist binding of G-protein-coupled receptors (GPCRs) controls most signal transduction processes. Although these receptors span the cell membrane, they are not considered to be voltage sensitive. Recently it was shown that both the activity of GPCRs and their affinity towards agonists are regulated by membrane potential. However, it remains unclear whether GPCRs intrinsically respond to changes in membrane potential. Here we show that two prototypical GPCRs, the m2 and m1 muscarinic receptors (m2R and m1R), display charge-movement-associated currents analogous to 'gating currents' of voltage-gated channels. The gating charge-voltage relationship of m2R correlates well with the voltage dependence of the affinity of the receptor for acetylcholine. The loop that couples m2R and m1R to their G protein has a crucial function in coupling voltage sensing to agonist-binding affinity. Our data strongly indicate that GPCRs serve as sensors for both transmembrane potential and external chemical signals.
G-protein coupled receptors are not considered to exhibit voltage sensitivity. Here, using Xenopus oocytes, we show that the M 2 muscarinic receptor (m2R) is voltage-sensitive. The m2R-mediated potassium channel (GIRK) currents were used to assay the activity of m2R. We found that the apparent affinity of m2R toward acetylcholine (ACh) was reduced upon depolarization. Binding experiments of [3 H]ACh to individual oocytes expressing m2R confirmed the electrophysiological findings. When the GIRK channels were activated either by overexpression of G␥ subunits or by injection of GTP␥S, the ratio between the currents measured at ؊60 mV and ؉40 mV was the same as for the basal activity of the GIRK channel. Thus, the steps downstream to agonist activation of m2R are not voltage-sensitive. We further found that, in contrast to m2R, the apparent affinity of m1R was increased upon depolarization. We also found that the voltage sensitivity of binding of [ 3 H]ACh to oocytes expressing m2R was greatly diminished following pretreatment with pertussis toxin. The cumulative results suggest that m2R is, by itself, voltage-sensitive. Furthermore, the voltage sensitivity does not reside in the ACh binding site, rather, it most likely resides in the receptor region that couples to the G-protein.
1. Presynaptic effects of muscarine on neurotransmitter release were studied at the frog neuromuscular junction, using focal depolarization of the presynaptic terminal to different levels. 2. Muscarine (10 ìÒ) had a dual effect on ACh release: concomitant inhibition and enhancement of release at the same patch of presynaptic membrane. 3. These two effects were maximal at low depolarizing pulses and diminished as depolarization increased. 4. At low depolarizing pulses, atropine (1 ìÒ) enhanced release, suggesting that ACh in the synaptic cleft causes a net tonic inhibition of ACh release. 5. In the presence of the M2 antagonist methoctramine (1 ìÒ), muscarine (10 ìÒ) enhanced ACh release. 6. In the presence of the M1 antagonist pirenzepine (10 ìÒ), muscarine (10 ìÒ) produced stronger inhibition. 7. These results show that the M2 receptor is responsible for inhibition of ACh release, while the M1 receptor is responsible for its enhancement. 8. The inhibitory effect of muscarine did not depend on extracellular [Ca¥]. Enhancement of release was abolished at low extracellular [Ca¥]. 9. The muscarine inhibitory effect was not associated with a reduction of Ca¥ current, while release enhancement was associated with an increase of Ca¥ current.8104
In outside-out patches of mouse-muscle membrane, embryonic-like channels were activated by pulses of acetylcholine (ACh). On increasing the ACh concentration, the rate of desensitization, 1/tau d, increased linearly with the peak open probability, indicating desensitization from the open state. Desensitization had only one time constant tau d at each ACh concentration. Recovery from desensitization was only approximately 10 times slower than desensitization, whereas the probability of steady-state channel opening, declined to < 0.01 with > 10(-6) M ACh. The peak probability of opening in > 10(-4) M ACh pulse was close to 1. A linear reaction scheme was not compatible with these results. The scheme had to be expanded resulting in a circular scheme with two additional ACh binding steps to desensitized channel states. The approximate rate constants of all reaction steps in the circular scheme could be determined using computer simulations. The model predicted that clusters of channel opening had the average duration tau d at the respective ACh concentration. In cell-attached patches on intact muscle fibers, similar average cluster durations were observed at the respective ACh concentration. This indicates that tau d in the intact muscle fibers has similar values as in outside-out patches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.