The present investigation aimed at a sustainable green turning operation of Ti-6Al-4V alloy using multi-objective optimization of surface roughness, tool flank wear, material removal rate, and tool wear loss with cutting speed, feed rate, and depth of cut as input parameters. The experiments were performed on a CNC lathe machine using an alumina-zirconia (Al 2 O 3 -ZrO 2 ) ceramic insert under a dry machining environment. The experiments were performed to examine the influence of input parameters with three levels and their interactions on the output responses. The experiment trials were designed according to Taguchi's L 25 orthogonal array. A hybrid approach of grey Taguchi-based response surface methodology (GT-RSM) was exposed for estimating the optimal integration of turning parameters. The weights to the output characteristics were assigned by the analytical hierarchy process (AHP). According to the ANOVA, cutting speed was the most influencing factor in the grey relation grade (GRG) succeeded by the depth of cut and feed rate. The optimized turning settings improved the surface roughness, tool flank wear, and tool wear loss by 10.31%, 6.51%, and 7.69% respectively with a 2.21% decrease in material removal rate. The result indicated that the GT-RSM methodology provided an excellent database that was effective to enhance the output quality responses. Keywords: dry machining, alumina-zirconia (Al 2 O 3 -ZrO 2 ) ceramic insert, hybrid methodology, analytical hierarchy process (AHP), ANOVA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.