To investigate the electrophysiological properties, synaptic connections, and anatomy of individual parvalbumin-immunoreactive (PV-IR) and cholecystokinin-immunoreactive (CCK-IR) interneurones in CA1, dual intracellular recordings using biocytin-filled microelectrodes in slices of adult rat hippocampus were combined with fluorescence labelling of PV- and CCK-containing cells. Of 36 PV-IR cells, 29 were basket cells, with most of their axonal arbours in the stratum pyramidale (SP). Six were bistratified cells with axons ramifying throughout stratum oriens (SO) and stratum radiatum (SR). One was a putative axo-axonic cell with an axonal arbour confined to half of the SP and a narrow adjacent region of the SO. Of 27 CCK-IR neurones, 13 were basket cells, with most of their axonal arbours in the SP, and included basket cells with somata in the SP (6), SO (3), and SR (2) and at the border between the stratum lacunosum-moleculare (SLM) and the SR (2). In addition, several dendrite-targeting cell classes expressed CCK-IR: 4 of 9 bistratified cells with axons ramifying in the SO and SR; all five Schaffer-associated cells whose axons ramified extensively in the SR; both cells classified as quadrilaminar because their axons ramified in the SO, SP, SR, and SLM; one SO-SO cell whose dendritic and axonal arbours were contained within the SO; and one perforant path-associated cell with axonal and dendritic arbours within the distal SR and SLM. The majority (31 of 36) of PV-IR neurones recorded were fast-spiking, and most fast-spiking cells tested (25 of 29 basket, 1 axo-axonic, and 5 of 6 bistratified cells) were PV-IR. However, 1 of 6 regular-spiking basket, 1 of 4 regular-spiking bistratified, and 3 of 5 burst-firing basket cells were also PV-IR. In contrast, the majority (17 of 27) of the CCK-IR neurones recorded were regular-spiking, 3 were burst-firing, and 7 were fast-spiking. These data confirm that the majority of PV-IR and CCK-IR axon terminals innervate proximal portions of CA1 pyramidal cells. Most PV-IR cells are fast-spiking, whereas most CCK-IR cells are regular-spiking. In both neurochemical classes basket cells predominate, but both groups included subpopulations of dendrite-targeting cells. Despite these similarities, the two populations exhibited very different somatic distributions, and each contained cellular morphologies not represented in the other.
Dual intracellular recordings in the CA1 region of adult rat hippocampal slices and biocytin filling of synaptically connected cells were used to study the excitatory postsynaptic potentials (EPSPs) elicited in basket (n= 7) and bistratified interneurones (n= 7) by action potentials activated in simultaneously recorded pyramidal cells. Interneurones could be subdivided according to their electrophysiological properties into classical fast spiking, burst firing, regular spiking and fast spiking cells with a rounded spike after‐hyperpolarization. These physiological classes did not, however, correlate with morphological type. EPSPs were not recorded in regular spiking cells. Average EPSP amplitudes were larger in bistratified cells (range, 0.5–9 mV) than in basket cells (range, 0.15–3.6 mV) and the probability of obtaining a pyramidal cell‐interneurone EPSP was also higher for the bistratified cells (1:7) than for the basket cells (1:22). EPSP 10–90% rise times in bistratified cells (0.7–2 ms) and their widths at half‐amplitude (3.9–11.2 ms) were slightly longer than in basket cells (rise times, 0.4–1.6 ms; half‐widths, 2.2–9.7 ms). The majority of these EPSPs (6 of 8 tested) increased in amplitude and duration with postsynaptic depolarization, although in two (of 4) basket cells the voltage relation was conventional. All EPSPs tested in both basket (n= 7) and bistratified cells (n= 5) decreased in amplitude with repetitive presynaptic firing. The average amplitudes of second EPSPs elicited within 15 ms of the first were between 34 and 94% of the average amplitude of the first EPSP. Third and fourth EPSPs in brief trains were further depressed. This depression was associated with an increase in the incidence of apparent failures of transmission indicating a presynaptic locus.
Hippocampal pyramidal cells express several alpha-subunits, which determine the affinity of GABAA (gamma-aminobutyric acid) receptors for benzodiazepine site ligands. This study asked whether inhibitory postsynaptic potentials (IPSPs) elicited by specific interneuronal subclasses were differentially sensitive to the alpha1-preferring agonist Zolpidem, i.e. whether different receptors mediate different inhibitory connections. Paired intracellular recordings in which the presynaptic cell was an interneuron and the postsynaptic cell a CA1 pyramid were performed in slices of adult rat hippocampus. Resultant IPSPs were challenged with Zolpidem, cells filled with biocytin and identified morphologically. IPSPs elicited by fast spiking (FS) basket cells (n = 9) were enhanced more than IPSPs elicited by regular spiking (RS) basket cells (n = 10). At FS basket cell synapses the efficacy of Zolpidem was equivalent to that of Diazepam, while RS basket cell IPSPs are enhanced 50% less by Zolpidem than by Diazepam. Thus, while alpha1 subunits may dominate at synapses supplied by FS basket cells, RS basket cell synapses also involve alpha2/3 subunits. Two bistratified cell IPSPs tested with Zolpidem did not increase in amplitude, despite powerful enhancements of bistratified cell IPSPs by Diazepam, consistent with previous indications that these synapses utilize alpha5-containing receptors. Enhancements of basket cell IPSPs by Zolpidem and Diazepam were bi- or triphasic with steep amplitude increases separated by plateaux, occurring 10-15, 25-30 and 45-55 min after adding the drug to the bath. The entire enhancement was, however, blocked by the antagonist Flumazenil (n = 7). Flumazenil, either alone (n = 3), or after Zolpidem, reduced IPSP amplitude to approximately 90% of control, suggesting that alpha4-containing receptors were not involved.
Simultaneous intracellular recordings from presynaptic Stratum pyramidale interneurons and postsynaptic pyramidal cells in adult rat hippocampal slices were performed to investigate the strength of the modulation of single-axon inhibitory postsynaptic potentials (IPSPs) by the GABAA receptor modulators pentobarbitone, diazepam and zinc. The processing of biocytin-filled interneurons for light microscopy revealed that these single-axon IPSPs were generated by basket cells (n = 33), bistratified cells (n = 18) and axo-axonic cells (n = 2). The IPSPs generated by these three groups of interneurons had amplitudes and widths at half amplitude with similar ranges, but when bistratified cell IPSPs were compared with basket cell IPSPs with similar half widths their rise times were slower. Pentobarbitone sodium (250 microM) powerfully enhanced 13 tested IPSPs generated by all three cell types. Amplitudes were enhanced by 82 +/- 56%, 10-90% rise times by 150 +/- 101% and the widths at half amplitude by 71 +/- 29%. Diazepam (1-2 microM) also increased all IPSPs tested, although the changes were more moderate in basket cell IPSPs (amplitudes increased by 19 +/- 11%, n = 8) than in bistratified cell IPSPs (amplitudes increased by 66 +/- 48%, n = 5). Basket cell IPSP 10-90% rise times and widths at half amplitude were not significantly increased. Bistratified cell IPSP 10-90% rise times were increased by 44 +/- 24% and the widths at half amplitude by 32 +/- 35%. The one tested IPSP generated by an axo-axonic cell was also diazepam-sensitive. Zinc, 250 microM, decreased four out of 10 IPSPs generated by basket cells and four out of five IPSPs generated by bistratified cells. The one tested axo-axonic cell IPSP was zinc-insensitive. These data suggest that IPSPs generated in CA1 pyramidal cells by basket and bistratified cells display different pharmacologies and may be mediated by different receptors or receptor combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.