Forming limit diagrams (FLDs) are calculated based on an extension of previous analyses by Jones and Gillis, [1] Choi et. al. [2] and Pishbin and Gillis. [3] They considered the plastic behavior of sheet metals in three deformation phases using a generalized flow law and using the commonly used power hardening law to describe the stress-strain behavior. In the present study, however, the yield criterion proposed by Hosford is used in conjunction with both power-law and Voce material constitutive equations to develop a model. This model is capable of predicting the forming limit strains achievable during sheet metal forming operations for sheets having planar isotropy. The predictions from Voce and power-law equations have been compared with the experimental forming limits determined by hemispherical punch stretching of gridded blanks of AA3105 and AA8011 aluminum alloys. The results indicate good prediction of limit strains for the two alloys when the Voce equation is applied.
In this paper, clad sheet bonding by cold rolling was investigated using the upper bond theorem. Plastic deformation behavior of the strip at the roll gap was investigated, unlike previous methods; distinctive angular velocities are used for different zones in roll gap in present model and absolute minimum of rolling power function is achieved. Rolling power, rolling force, and thickness ratio of the rolled product affected by various rolling condition such as flow stress of sheets, initial thickness ratio, roller radius, total thickness reduction, coefficient of friction between rollers and metals and between components layer, roll speed, etc., are discussed. It was found that the theoretical prediction of the thickness ratio of the rolled product, rolling force, and rolling power are in good agreement with the experimental measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.