Motor evoked potentials (MEPs) evoked by transcranial electrical stimulation (TES) have become an important technique for monitoring spinal cord function intra-operatively, but can fail in some patients. A new technique of double-train stimulation is described. A multipulse transcranial electrical stimulus is preceded by a preconditioning pulse train that leads to larger MEP responses. An MEP monitoring system was adapted for double-train transcranial stimulation (DTS). MEP responses from 160 anterior tibial muscles obtained by double-train stimulation were analysed. All patients received propofol/remifentanil/O2/N2O anaesthesia. Fifty-two (83%) out of 63 single-train tibial MEPs with response amplitudes below 100 microV were magnified to over 100 microV, with an inter-train (inter-stimulus) interval ITI = 10-35 ms. These 63 amplitudes were magnified by an overall logarithmic mean factor of 15.5. For 97 MEPs with amplitudes above 100 microV, the logarithmic mean facilitation factor was 2.4. It was concluded that double-train TES stimulation can markedly facilitate responses to a single stimulus train (STS). The facilitation appears to be most effective when the responses to STS would otherwise be small or absent. This preconditioning stimulation technique is therefore useful when an STS leads to responses that are too small for effective monitoring.
Motor potentials evoked by transcranial electrical stimulation (TES) are used for monitoring the motor pathways, with emphasis on the spinal cord and brainstem. The stimulus voltage threshold is the voltage below which no motor response can be elicited. It has frequently been used as a monitoring parameter. However, its value can be limited, because it is affected by the impedance of the stimulus electrode. For example, the voltage threshold can change owing to formation of oedema of the scalp. The relationship between the TES voltage threshold and the electrode impedance of different electrode types was studied and discussed in the context of neuromonitoring: 323 impedance and voltage threshold pairs were studied, and TES was performed with disc cup EEG electrodes (six), corkscrew electrodes (type I: seven, type II: eight), multiple EEG needle electrodes (16) and a large needle electrode Cz' (anode) together with a ground strip over the forehead (cathode) (286). The study found the voltage threshold to be strongly dependent on electrode impedance when the impedance was higher than 460 omega (correlation: R2=0.87; p < 0.001). Below 460 omega, which included 91% of the category with the largest electrode surfaces, 25% of the multiple EEG electrodes and 75% of type II corkscrew electrodes, no significant correlation (R2=0.0064; p=0.15) was found. It was concluded that the correlation between the TES voltage threshold and electrode impedance can be markedly reduced by using TES electrodes with large contact surfaces, resulting in limit values for these parameters. This also may improve the reliability of TES motor evoked potential monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.