Publisher's copyright statement: c 2006 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder Personal use of this material is permitted.However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Additional information:Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract-The objective of this paper is to compare five different generator systems for wind turbines, namely the doubly-fed induction generator with three-stage gearbox (DFIG3G), the directdrive synchronous generator with electrical excitation (DDSG), the direct-drive permanent-megnet generator (DDPMG), the permanent-magnet generator with single stage gearbox (PMG1G), and the doubly-fed induction generator with single-stage gearbox (DFIG1G). The comparison is based on cost and annual energy yield for a given wind climate. The DFIG3G is a cheap solution using standard components. The DFIG1G seems the most attractive in terms of energy yield divided by cost. The DDPMG has the highest energy yield, but although it is cheaper than the DDSG, it is more expensive than the generator systems with gearbox.
Abstract-A tendency to erect ever more wind turbines can be observed in order to reduce the environmental consequences of electric power generation. As a result of this, in the near future, wind turbines may start to influence the behavior of electric power systems by interacting with conventional generation and loads. Therefore, wind turbine models that can be integrated into power system simulation software are needed.In this contribution, a model that can be used to represent all types of variable speed wind turbines in power system dynamics simulations is presented. First, the modeling approach is commented upon and models of the subsystems of which a variable speed wind turbine consists are discussed. Then, some results obtained after incorporation of the model in PSS/E, a widely used power system dynamics simulation software package, are presented and compared with measurements.
Abstract-A tendency to erect ever more wind turbines can be observed in order to reduce the environmental consequences of electric power generation. As a result of this, in the near future, wind turbines may start to influence the behavior of electric power systems by interacting with conventional generation and loads. Therefore, wind turbine models that can be integrated into power system simulation software are needed.In this contribution, a model that can be used to represent all types of variable speed wind turbines in power system dynamics simulations is presented. First, the modeling approach is commented upon and models of the subsystems of which a variable speed wind turbine consists are discussed. Then, some results obtained after incorporation of the model in PSS/E, a widely used power system dynamics simulation software package, are presented and compared with measurements.
Abstract-The Archimedes Wave Swing is a system that converts ocean wave energy into electric energy. A pilot plant of this system has been built. The generator system consists of a permanent-magnet linear synchronous generator with a current source inverter (CSI). The correlation between the measured and the calculated parameters of the designed generator is reasonable. The annual energy yield of the pilot plant is calculated from the wave distribution as 1.64 GWh. Using a voltage source inverter instead of a CSI improves the power factor, the current waveforms, the efficiency and the generator force, so that the annual energy yield increases with 18%.
This paper describes the modelling and control system of a wind turbine, using a doubly fed induction generator. This configuration makes the wind turbine suitable for variable speed wind energy application. The power captured by the wind turbine is converted into electrical power by the induction generator, and it is transmitted to the grid by the stator and the rotor windings. The control system generates voltage command signals for rotor converter and grid converter, respectively, in order to control the power of the wind turbine. Reactive power exchanged with the network through the converters is set to 0 VAr. The control strategy has been developed using MATLAB/Simulink. The simulation results are presented and discussed in the conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.