Nutrients may affect the invasiveness of alien plants and the invasibility of native plant communities. We performed a greenhouse experiment to investigate the interactive effect of invasion by a clonal herb Hydrocotyle vulgaris and nutrient enrichment on biomass and evenness of native plant communities. We established three types of plant communities (H. vulgaris alone, native plant communities without or with H. vulgaris) under low and high levels of nutrients. Native communities consisted of eight native, terrestrial species of three functional groups, i.e. four grasses, two legumes, and two forbs. Invasion of H. vulgaris had no effect on biomass of the native community, the functional groups, or the individual species. High nutrients increased biomass of grasses, but reduced evenness of the community. High nutrients also decreased the competitive effect, and the relative dominance index of H. vulgaris. Therefore, high nutrients reduced the competitive ability of H. vulgaris and enhanced the resistance of the native community to invasion. The results provide a basis for management strategies to control the invasion and spread of H. vulgaris by manipulating resource availability to support native communities.
SummaryBiological invasions are determined by interactions between resident plant communities and exotic plants. Time of invasion and species diversity of resident plant communities may greatly affect exotic plant invasions. We assembled low‐ and high‐diversity resident plant communities by sowing seeds of four and eight grassland species, respectively, and at each of three time periods (1, 4 and 7 weeks after sowing), the resident communities were invaded by Hydrocotyle vulgaris or not. We also constructed a plant community with H. vulgaris alone. Presence of H. vulgaris had no effect on biomass of the resident communities or biomass of each component species. Community age significantly affected biomass and evenness of the resident communities, and their competition with H. vulgaris, but the priority effect of the resident communities was slight. Increasing species richness did not change the interaction between H. vulgaris and the resident plant communities. These findings suggest a weaker competitive exclusionary effect of H. vulgaris on the resident communities with early germination, and H. vulgaris tended to have no significant impact on intact resident terrestrial plant communities. Thus, the potential risk of H. vulgaris invasion is low, especially in the communities with young age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.