We demonstrate coupling between the atomic spin- and orbital-angular momentum (OAM) of the atom's center-of-mass motion in a Bose-Einstein condensate (BEC). The coupling is induced by Raman-dressing lasers with a Laguerre-Gaussian beam and creates coreless vortices in an F=1 ^{87}Rb spinor BEC. We observe correlations between spin and OAM in the dressed state and characterize the spin texture; the result is in good agreement with the theory. In the presence of the Raman field, our dressed state is stable for 0.1 s or longer, and it decays due to collision-induced relaxation. As we turn off the Raman beams, the vortex cores in the bare spin |m_{F}=1⟩ and |-1⟩ split. These spin-OAM coupled systems with the Raman-dressing approach have great potential for exploring new topological textures and quantum states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.