In this review the quality properties of linseed oil for food uses are discussed as well as factors affecting this quality. Linseed oil has a favourable fatty acid composition with a high linolenic acid content. Linseed oil contains nearly 60% α-linolenic acid, compared with 25% for plant oils generally. The content of linolenic acid and omega-3 fatty acids is reported to be high in linseed grown in northern latitudes. The composition of fatty acids, especially unsaturated fatty acids, reported in different studies varies considerably for linseed oil. This variation depends mainly on differences in the examined varieties and industrial processing treatments. The fatty acid composition leads also to some problems, rancidity probably being the most challenging. Some information has been published concerning oxidation and taste, whereas only a few studies have focused on colour or microbiological quality. Rancidity negatively affects the taste and odour of the oil. There are available a few studies on effects of storage on composition of linseed oil. In general, storage and heat promote auto-oxidation of fats, as well as decrease the amounts of tocopherols and vitamin E in linseed oil. Several methods are available to promote the quality of the oil, including agronomic methods and methods of breeding as well as chemical, biotechnological and microbiological methods. Time of harvesting and weather conditions affect the quality and yield of the oil.
Bast fibre is the most important fraction of bast fibre plants for technical products, i.e. thermal insulations and packaging materials. The hygienic quality of the various fractions of bast fibre plants is of interest in thermal insulations, because it may affect the quality of indoor air. Packaging materials may be associated e.g. with foodstuffs, which highlights the importance of hygienic quality. The aim of this study was to screen the hygienic quality, determined as microbial content, of mechanically fractionated fibre hemp and linseed plants harvested in the autumn before frost, after early frost and in spring. In addition, the possible correlation between microbes and ash was investigated. Two plant species, fibre hemp and linseed were studied. The plants were cultivated in Siuntio in southern Finland during the years 2002 and 2003, harvested in autumn or in spring and mechanically fractionated. The microbial contents of the fractions were examined by measuring the total number of microbes using Hygicult® growing slides. The microbial content of fractions of fibre hemp and linseed varied between 103 and 109 cfu/gdw. The fibre of hemp harvested after early frost or in spring had the lowest amount of moulds, but during winter and spring the amounts of bacteria and yeasts increased in hemp. Mechanically separated fibre and shive contained less microbes than the stalk. Ash contents of all examined samples of stems and stem fractions varied between 1% and 14%. The fibre after fractionating had a lower ash content (2.33.3%) than that of stems (4.46.9%) harvested in the autumn. The ash content of stem and shive decreased to 1.6% during winter, the ash content of fibre being even somewhat lower (0.9%). No correlation was observed between the contents of microbes and ash.;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.