The structural, microstructural, and magnetic properties of Mn1-xBixFe2O4 (where x = 0.0, 0.05, 0.1, 0.15, and 0.2) nanoparticles prepared by solution combustion method were investigated. Rietveld-refined X-ray diffraction patterns confirm the single-phase formation with space group Fd3m having spinel cubic structure. The porous nature of the samples was confirmed by scanning electron microscopy (SEM). Composition values of the theoretical stoichiometry and energy-dispersive spectroscopy (EDS) composition values are well matched for all samples. The dielectric parameters such as real part of dielectric constant, imaginary part of dielectric constant, and dielectric loss tangent decrease with the increase in frequency. The AC conductivity increases with increase in the Bi3+ concentration. The real part of complex impedance decreases with the increase in frequency. Cole-Cole plots reveal that one semicircle was obtained for each of the samples. The real and imaginary parts of electric modulus vary with frequency. The magnetic hysteresis curves of all samples reveal the soft magnetic material nature. We observed S esteems began uniquely from the higher superparamagnetic, we would have watched the monotonic decrease in S with increase in Bi3+ concentration. Furthermore, the magnetic parameters were estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.