Each summer, large quantities of freshwater and associated dissolved and particulate material are released from the Greenland Ice Sheet (GrIS) into local fjords where they promote local phytoplankton growth. Whether the influx of freshwater and associated micronutrients in glacial meltwater is able to stimulate phytoplankton growth beyond the fjords is disputed, however. Here we show that the arrival of freshwater discharge from outlet glaciers from both southeast and southwest GrIS coincides with large‐scale blooms in the Labrador Sea that extend over 300 km from the coast during summer. This summer bloom develops about a week after the arrival of glacial meltwater in early July and persists until the input of glacial meltwater slows in August or September, accounting for ~40% of annual net primary production for the area. In view of the absence of a significant change in the depth of the mixed layer associated with the arrival of glacial meltwater to the Labrador Sea, we suggest that the increase in phytoplankton biomass and productivity in summer is likely driven by a greater nutrient supply (most likely iron). Our results highlight that the ecological impact of meltwater from the GrIS likely extends far beyond the boundaries of the local fjords, encompassing much of the eastern Labrador Sea. Such impacts may increase if melting of the GrIS accelerates as predicted.
The Amundsen Sea Polynya (ASP) is distinguished by having the highest net primary production per unit area in the coastal Antarctic. Recent studies have related this high productivity to the presence of fast‐melting ice shelves, but the mechanisms involved are not well understood. In this study we describe the first numerical model of the ASP to represent explicitly the ocean‐ice interactions, nitrogen and iron cycles, and the coastal circulation at high resolution. The study focuses on the seasonal cycle of iron and carbon, and the results are broadly consistent with field observations collected during the summer of 2010–2011. The simulated biogeochemical cycle is strongly controlled by light availability(dictated by sea ice, phytoplankton self‐shading, and variable sunlight). The micronutrient iron exhibits strong seasonality, where scavenging by biogenic particles and remineralization play large compensating roles. Lateral fluxes of iron are also important to the iron budget, and our results confirm the key role played by inputs of dissolved iron from the buoyancy‐driven circulation of melting ice shelf cavities (the “meltwater pump”). The model suggests that westward flowing coastal circulation plays two important roles: it provides additional iron to the ASP and it collects particulate organic matter generated by the bloom and transports it to the west of the ASP. As a result, maps of vertical particulate organic matter fluxes show highest fluxes in shelf regions located west of the productive central ASP. Overall, these model results improve our mechanistic understanding of the ASP bloom, while suggesting testable hypotheses for future field efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.