In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.
Onion (Allium cepa) is an economically important crop in the United States, generating over $900 million annually in farm receipts from 2000 to 2004 (88). U.S. onion production area ranges from 65,000 to 70,000 hectares annually, with over 80% of the summer production (54,000 hectares) in the western states. On average, 53 million metric tons of onion bulbs are harvested annually from nearly 3 million hectares worldwide. A significant portion of the U.S. and world supply of onion seed is produced in the western United States, primarily in the Pacific Northwest (124). The genus Allium includes various economically important cultivated species, including the bulb onion, chive (A. schoenoprasum), garlic (A. sativum), and leek (A. porrum) (10). At least 18 other Allium species are consumed as fresh vegetables, pickled, or used as flavoring. However, the bulb onion is the most economically valuable species. On average, worldwide production of garlic is valued at about 10% that of the bulb onion (10). Leek and bunching onion are the next most valuable species, with production concentrated in Europe and the Orient, respectively. Bunching onion (A. fistulosum) production also is important in some areas of the United States, such as California. The distinctive flavor or odor of Allium spp. is produced when plant tissues are bruised or cut, and the enzyme alliinase hydrolyzes S-alk(en)yl cysteine sulfoxide precursors to form volatile sulfur compounds (10). Onion, garlic, and their relatives, although primarily grown for food, are also used in traditional medicine, including the treatment of chicken pox, the common cold, influenza, measles, and rheumatism. Antimicrobial characteristics of alliums are likely the result of sulfur compounds. Research has demonstrated that extracts of onion and garlic decrease sugars, lipids, and platelet aggregation, and enhance fibrinolysis in blood, indicating that alliums may help prevent arteriosclerosis and other cardiovascular diseases (111).
Each year, 20%–40% of crops are lost due to plant pests and pathogens. Existing plant disease management relies predominantly on toxic pesticides that are potentially harmful to humans and the environment. Nanotechnology can offer advantages to pesticides, like reducing toxicity, improving the shelf-life, and increasing the solubility of poorly water-soluble pesticides, all of which could have positive environmental impacts. This review explores the two directions in which nanoparticles can be utilized for plant disease management: either as nanoparticles alone, acting as protectants; or as nanocarriers for insecticides, fungicides, herbicides, and RNA-interference molecules. Despite the several potential advantages associated with the use of nanoparticles, not many nanoparticle-based products have been commercialized for agricultural application. The scarcity of commercial applications could be explained by several factors, such as an insufficient number of field trials and underutilization of pest–crop host systems. In other industries, nanotechnology has progressed rapidly, and the only way to keep up with this advancement for agricultural applications is by understanding the fundamental questions of the research and addressing the scientific gaps to provide a rational and facilitate the development of commercial nanoproducts.
BackgroundViral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide.Principal FindingsTomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV.SignificanceDetails of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral defense and viral pathogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.