Abstract. The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O 2 ) Aband at 0.765 microns and the carbon dioxide (CO 2 ) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO 2 dry-air mole fraction, XCO 2 . Variations of XCO 2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO 2 . This is a particularly challenging remote-sensing observation because all but the largest emission sources and natural absorbers produce only small (< 0.25 %) changes in the background XCO 2 field. High measurement precision is therefore essential to resolve these small variations, and high accuracy is needed because small biases in the retrieved XCO 2 distribution could be misinterpreted as evidence for CO 2 fluxes.To meet its demanding measurement requirements, each OCO-2 spectrometer channel collects 24 spectra s −1 across a narrow (< 10 km) swath as the observatory flies over the sunlit hemisphere, yielding almost 1 million soundings each day. On monthly timescales, between 7 and 12 % of these soundings pass the cloud screens and other data quality filters to yield full-column estimates of XCO 2 . Each of these soundings has an unprecedented combination of spatial resolution (< 3 km 2 /sounding), spectral resolving power (λ/ λ > 17 000), dynamic range (∼ 10 4 ), and sensitivity (continuum signal-to-noise ratio > 400).The OCO-2 instrument performance was extensively characterized and calibrated prior to launch. In general, the instrument has performed as expected during its first 18 months in orbit. However, ongoing calibration and science analysis activities have revealed a number of subtle radiometric and spectroscopic challenges that affect the yield and quality of the OCO-2 data products. These issues include increased numbers of bad pixels, transient artifacts introduced by cosmic rays, radiance discontinuities for spatially non-uniform scenes, a misunderstanding of the instrument polarization orientation, and time-dependent changes in the throughput of the oxygen A-band channel. Here, we describe the OCO-2 instrument, its data products, and its on-orbit performance. We then summarize calibration challenges encountered during its first 18 months in orbit and the methods used to mitigate their impact on the calibrated radiance spectra distributed to the science community.
Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO 2 ) with the accuracy, resolution, and coverage needed to quantify CO 2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014 and has gathered more than 2 years of observations. The v7/v7r operational data products from September 2014 to January 2016 are discussed here. On monthly timescales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO 2 dry air mole fraction, X CO 2 , that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of X CO 2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes X CO 2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north-south X CO 2 gradient is small. Enhanced X CO 2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north-south X CO 2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in X CO 2 across the Northern Hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO 2 . As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart X CO 2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high-resolution global dataset.
Abstract. The Orbiting Carbon Observatory-2 (OCO-2) is the first National Aeronautics and Space Administration (NASA) satellite designed to measure atmospheric carbon dioxide (CO2) with the accuracy, resolution, and coverage needed to quantify CO2 fluxes (sources and sinks) on regional scales. OCO-2 was successfully launched on 2 July 2014, and joined the 705 km Afternoon Constellation on 3 August 2014. On monthly time scales, 7 to 12 % of these measurements are sufficiently cloud and aerosol free to yield estimates of the column-averaged atmospheric CO2 dry air mole fraction, XCO2, that pass all quality tests. During the first year of operations, the observing strategy, instrument calibration, and retrieval algorithm were optimized to improve both the data yield and the accuracy of the products. With these changes, global maps of XCO2 derived from the OCO-2 data are revealing some of the most robust features of the atmospheric carbon cycle. This includes XCO2 enhancements co-located with intense fossil fuel emissions in eastern US and eastern China, which are most obvious between October and December, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the Amazon, central Africa, and Indonesia is also evident in this season. In May and June, when the north-south XCO2 gradient is largest, these sources are less apparent in global maps. During this part of the year, OCO-2 maps show a more than 10 ppm reduction in XCO2 across the northern hemisphere, as photosynthesis by the land biosphere rapidly absorbs CO2. As the carbon cycle science community continues to analyze these OCO-2 data, information on regional-scale sources (emitters) and sinks (absorbers) which impart XCO2 changes on the order of 1 ppm, as well as far more subtle features, will emerge from this high resolution, global data set.
Abstract. The Orbiting Carbon Observatory-2 (OCO-2) carries and points a three-channel imaging grating spectrometer designed to collect high-resolution, co-boresighted spectra of reflected sunlight within the molecular oxygen (O2) A-band at 0.765 microns and the carbon dioxide (CO2) bands at 1.61 and 2.06 microns. These measurements are calibrated and then combined into soundings that are analyzed to retrieve spatially resolved estimates of the column-averaged CO2 dry air mole fraction, XCO2. Variations of XCO2 in space and time are then analyzed in the context of the atmospheric transport to quantify surface sources and sinks of CO2. This is particularly challenging remote sensing observations because the all but the largest emission sources and natural absorbers produce only small (
A survey of the literature reveals no works concerned with the visual cells of the silverjaw minnow (Ericymba buccata), although Brown ( '36) has shown that this species, like many others, undergoes color changes in accordance with the ratio of incident and reflected light striking the eye of the animal.This study was undertaken upon the suggestion of Mr.Milton B. Trautman who is engaged in ichthyological studies of Ohio fishes. Mr. Trautman became interested in the eyes of Ericgmba, since his field observations indicated that this form is quite capable of withstanding considerable differences in silt content of the waters in which it lives. The following statement is abstracted from his letter of January 5, 1949: "The species is well distributed over Ohio and, therefore, somewhat tolerant of turbid water. However, it is abundant only in the clearest of the smaller streams which have plenty of sand and a moderate gradient. Ericymba seems to prefer to lie over clean sand and seemingly is quite phototropic. In a brilliant noonday sun when other species had retired to the shade, I have seen large numbers over bright white sand in clear water. Ericymba hides under 1Contribution from the Department of Zoology (no.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.