Cereal grains treated with organic acids were proved to increase ruminal resistant starch and can relieve the risk of ruminal acidosis. However, previous study mainly focussed on acid-treated barley, the effects of organic acid-treated corn is still unknown. The objectives of this study were to evaluate whether feeding ground corn steeped in citric acid (CA) would affect ruminal pH and fermentation patterns, milk production and innate immunity responses in dairy goats. Eight ruminally cannulated Saanen dairy goats were used in a crossover designed experiment. Each experimental period was 21 day long including 14 days for adaption to new diet and 7 days for sampling and data collection. The goats were fed high-grain diet contained 30% hay and 70% corn-based concentrate. The corn was steeped either in water (control) or in 0.5% (wt/vol) CA solution for 48 h. Goats fed CA diet showed improved ruminal pH status with greater mean and minimum ruminal pH, and shorter (P<0.05) duration of ruminal pH<5.6 and less area of ruminal pH<5.6, 5.8 and 6.0. Concentration of total volatile fatty acid and molar proportion of propionate were less but the molar proportion of acetate was greater (P<0.05) in goats fed the CA diet than the control diet. Concentration of ruminal lipopolysaccharide (LPS) was lower (P<0.05) and that of lactic acid also tended (P<0.10) to be lower in goats fed CA than the control. Although dry matter intake, actual milk yield, yield and content of milk protein and lactose were not affected, the milk fat content and 4% fat-corrected milk tended (P<0.10) to be greater in goats fed CA diet. For the inflammatory responses, peripheral LPS did not differ, whereas the concentration of LPS binding protein and serum amyloid A tended (P<0.10) to be less in goats fed CA diet. Similarly, goats fed CA diet had less (P<0.05) concentration of haptoglobin and tumour necrosis factor. These results indicated that feeding ground corn treated with CA effectively improved ruminal pH status, thus alleviated the risk of ruminal acidosis, reduced inflammatory response, and tend to improve milk yield and milk fat test.
A previous in vitro study revealed that Arg elicits positive effects on casein synthesis through alterations of the Arg-ornithine pathway in bovine mammary epithelial cells. The main purpose of this work was to determine the effects of arginase inhibition using N-hydroxy-nor-l-arginine (nor-NOHA) on milk protein synthesis in vivo. Six healthy Chinese Holstein cows with similar body weight (550.0 ± 20 kg; means ± standard deviation), parity (4), body condition score (3.0), milk yield (21.0 ± 1.0 kg), and days in milk (80 ± 2) were selected and randomly assigned to 3 treatments in a replicated 3 × 3 Latin square design with 22 d for each period (7 d for infusion and 15 d for washout). The treatments were (1) control: saline infusion; (2) nor-NOHA: infusion of 125 mg/L of nor-NOHA; (3) nor-NOHA + Arg: infusion of 125 mg/L of nor-NOHA with 9.42 g/L of Arg. The activity of enzymes related to Arg metabolism, milk protein synthesis, and expression of AA transporters was determined. The infusion of nor-NOHA decreased the activity of arginase but had no effect on the activity of ornithine decarboxylase and nitric oxide synthase in serum, and these responses were the same at the gene expression level in mammary gland. In addition, the infusion of nor-NOHA also reduced protein and fat synthesis in milk but had no effect on milk yield. When Arg was infused with nor-NOHA, the activity of total arginase, ornithine decarboxylase, and nitric oxide synthase, and the concentration of casein, protein, and fat in milk did not change compared with the nor-NOHA group, but the milk protein yield, the expression of some Arg transporters (SLC7A5 and SLC7A8), and milk yield increased. Overall, results verified previous in vitro findings indicating that synthesis of casein protein is closely regulated by the Arg-ornithine pathway in bovine mammary gland.
This study was undertaken to evaluate the milk protein response when cows were supplied a balanced AA profile and to determine whether a deficiency of Leucine (Leu) or Arginine (Arg) had a negative effect on milk protein. Eight mid-lactation Holstein cows were randomly assigned to 5-day continuous jugular infusions of saline (CTL), EAA mixture prepared on the profile of casein and supplied (in % of lysine (Lys)) 100% of Lys, 33.3% of methionine (Met), 110.2% of Leu, 43.6% of Arg, 50.8% of threonine (Thr), 81.6% of valine (Val), 69.7% of isoleucine (Ile), 61.4% of phenylalanine (Phe) and 34.2% of histidine (His) (Casein, 160 g/d), EAA mixture excluding Leu (-Leu, 163 g/d) or EAA mixture excluding Arg (-Arg, 158 g/d) in a duplicated 4 × 4 Latin square design with four infusion periods separated by 7-day interval period. The basal diet supplied 1.6 Mcal NE and 94.4 g MP per 1 kg DM to meet requirements for lactation. The Casein treatment provided a balanced supply (in % of MP) of 10.3% Leu and 5.3% Arg, whereas in the two subsequent -Leu and -Arg treatments, the concentration of Leu and Arg was reduced to 8.4 and 4.6% respectively. Dry matter intake (15.4 kg/day) was not affected by treatments. The Casein treatment increased milk yield (14.9%, p < 0.001), milk protein yield (120 g, p < 0.001) and milk protein efficiency (0.03, p = 0.099) than CTL treatment. However, the -Leu treatment decreased the responses of above-measured parameters by 6.25%, 70 g, 0.05 (p < 0.06) (compared with Casein). These effects of Leu were related to decreased Leu concentration and improved concentration of Ile and Val in plasma. The -Arg treatment decreased the plasma Arg concentration than the Casein treatment, whereby resulted in the decrease of milk yield (5.7%, p = 0.073), milk protein yield (60 g, p = 0.011) and milk protein efficiency (0.04, p = 0.037). In conclusion, supply of EAA profile of casein can increase the lactation production in dairy cows, and 8.6% of Leu in MP partly limits the milk protein response when the requirements of Lys, Met and His were met. The level of Arg at 4.6% MP is not deemed to an ideal profile, as evidenced by decreased milk protein efficiency.
The objective of this study was to determine the effects of dietary n-6:n-3 polyunsaturated fatty acid (PUFA) ratios on heterophil:lymphocyte (H:L) ratios and T cell subsets in the peripheral blood of the growing Yangzhou goose. A total of 160 healthy Yangzhou geese (0.407 ± 0.023 kg), aged 21 d, were randomly divided into 4 groups consisting of diets with different n-6:n-3 PUFA ratios: 12:1, 9:1, 6:1, and 3:1. White blood cell counts and H:L ratios were measured at 42, 56, and 70 d of age; T lymphocyte subsets were also analyzed using monoclonal antibodies and flow cytometry simultaneously. The results showed that differences were found in white blood cells between groups (P < 0.05) but not within groups (P > 0.05), and white blood cells of 70-d-old geese were significantly higher than those of other ages within the same group. The H:L ratios of all groups decreased as age increased, and differences were found in 6:1 and 3:1 groups between ages (P < 0.05). As for the comparison of H:L ratio between treatments, 6:1 and 3:1 were lower than the other 2 groups at 42 or 70 d of age (P < 0.05), and 3:1 was lower than the other 3 groups at 56 d of age (P < 0.05). Moreover, H:L ratios had a tendency to decrease with the decrease of n-6:n-3 PUFA ratios. Furthermore, cluster of differentiation (CD) 3(+) and CD8(+) increased gradually, whereas CD4(+) and CD4(+):CD8(+) ratios first increased and then decreased as age increased. Differences were detected in T cell subsets among ages (P < 0.05). In addition, CD4(+) and CD4(+):CD8(+) ratios were affected remarkably by n-6:n-3 PUFA ratios but CD3(+) and CD8(+) were not, and 6:1 had much higher CD4(+) percentage and CD4(+):CD8(+) ratio compared with the other groups (P < 0.05). Taken together, diets containing low n-6:n-3 PUFA ratios could decrease H:L ratios in the peripheral blood. Additionally, CD4(+) percentage and CD4(+):CD8(+) ratio were much higher in the 6:1 group, which could be relevant for improving positive immune responses for Yangzhou goslings from 42 to 70 d of age.
This study investigated the effects of tannic acid (TA)-treated corn on changes in ruminal fermentation characteristics and the composition of the ruminal bacterial community in vitro. Ruminal fluid was obtained from three rumen-fistulated goats fed a 60:40 (forage/concentrate) diet. The batch cultures consisted of 25 ml of strained rumen fluid in 25 ml of an anaerobic buffer containing 0.56 g of ground corn, 0.24 g of soybean meal, 0.10 g of alfalfa, and 0.10 g of oat grass. Ground corn (2 mm) was steeped in an equal quantity (i.e., in a ratio of 1:1, w/v) of water alone (Con), 15 (TA15), 25 (TA25), and 35 g/l (TA35) TA solution for 12 h. After incubation for 24 h, TA-treated corn linearly increased (P <0.05) ruminal pH and the molar proportion of acetate, but linearly reduced (P <0.05) total volatile fatty acids and the molar proportion of butyrate compared with the Con treatment. Illumina MiSeq sequencing was used to investigate the profile changes of the ruminal microbes. A principal coordinates analysis plot based on weighted UniFrac values revealed that the structure of the ruminal bacterial communities in the control group was different from that of the TA-treated corn groups. The results of changes in the rumen bacterial communities showed that TA-treated corn linearly enriched (P <0.05) Rikenellaceae_RC9_gut_group, but linearly reduced (P <0.05) Ruminococcaceae_NK4A214_group, Ruminococcus_2, and unclassified_o__Clostridiales. Functional prediction of ruminal microbiota revealed that the TA-treated corn linearly decreased ruminal microbiota function of utilizing starch through pyruvate metabolism. In conclusion, TA-treated corn can modulate the rumen fermentation characteristics, microbial composition, and metabolic pathways, which may be potentially useful for preventing the occurrence of ruminal acidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.