In this letter, we show the possibility of controlling the optical bistability and group index switching in graphene under the action of strong magnetic and infrared laser fields. By using quantum-mechanical density matrix formalism, we obtain the equations of motion that govern the optical response of graphene in strong magnetic and optical fields. We found that by properly choosing the parameters of the system, the bistable behaviors and group velocity can be controlled. These results may have potential applications in telecommunication and optical information processing.
In this letter, controllable optical bistability (OB) and optical multistability (OM) in a defect slab doped with a single-layer graphene nanostructure are proposed. Our numerical results show that it is easy to control OB by Rabi frequencies of coupling fields, detuning of coherent fields, and relative phase of applied fields. Moreover, the thickness effect of the slab is considered as a new parameter for controlling the OB behaviors. It is found that the transition from OB to OM or vice versa can be made possible by the thickness of the slab and relative phase of the applied fields. We hope that our results will have potential applications in quantum information science and technology based nanoscale devices.
A nitridation technique is proposed for ultrathin, SiO2 oxides in deep submicron CMOS technology, which involves direct implantation of molecular nitrogen (N2) into the silicon sUbstrate. N2 ions were implanted into silicon at different doses and energies, through a 150 A thick screen oxide. In this study the effect of implanted N atoms on silicon oxidation, and SiO2 oxide nitridation process have been studied. Two groups of the N2-implanted wafers were used: wafers from one group were annealed prior to the screen oxide removal, whereas wafers of the other group did not receive this anneal. It is shown that nitridation can be achieved both ways, allowing this technique to be easily integrated into a semiconductor IC fabrication process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.